BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36043661)

  • 21. Enhanced astaxanthin production from microalga, Haematococcus pluvialis by two-stage perfusion culture with stepwise light irradiation.
    Park JC; Choi SP; Hong ME; Sim SJ
    Bioprocess Biosyst Eng; 2014 Oct; 37(10):2039-47. PubMed ID: 24700132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A green decontamination technology through selective biomineralization of algicidal microorganisms for enhanced astaxanthin production from Haematococcus pluvialis at commercial scale.
    Yu BS; Hong ME; Sung YJ; Choi HI; Chang WS; Kwak HS; Sim SJ
    Bioresour Technol; 2021 Jul; 332():125121. PubMed ID: 33845314
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-cost production of green microalga Botryococcus braunii biomass with high lipid content through mixotrophic and photoautotrophic cultivation.
    Yeesang C; Cheirsilp B
    Appl Biochem Biotechnol; 2014 Sep; 174(1):116-29. PubMed ID: 24989454
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of astaxanthin production using Haematococcus pluvialis with novel LED wavelength shift strategy.
    Xi T; Kim DG; Roh SW; Choi JS; Choi YE
    Appl Microbiol Biotechnol; 2016 Jul; 100(14):6231-6238. PubMed ID: 26860938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium.
    Mohammad Mirzaie MA; Kalbasi M; Mousavi SM; Ghobadian B
    Prep Biochem Biotechnol; 2016; 46(2):150-6. PubMed ID: 25807048
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of astaxanthin production from Haematococcus pluvialis under autotrophic growth conditions by a sequential stress strategy.
    Niizawa I; Espinaco BY; Leonardi JR; Heinrich JM; Sihufe GA
    Prep Biochem Biotechnol; 2018; 48(6):528-534. PubMed ID: 29932803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: increased production of biomass and FAMEs.
    Park WK; Moon M; Kwak MS; Jeon S; Choi GG; Yang JW; Lee B
    Bioresour Technol; 2014 Nov; 171():343-9. PubMed ID: 25218207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrated valorization system for simultaneous high strength organic wastewater treatment and astaxanthin production from Haematococcus pluvialis.
    Pan M; Zhu X; Pan G; Angelidak I
    Bioresour Technol; 2021 Apr; 326():124761. PubMed ID: 33503516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Repeated cultivation: non-cell disruption extraction of astaxanthin for Haematococcus pluvialis.
    Sun H; Guan B; Kong Q; Geng Z; Wang N
    Sci Rep; 2016 Feb; 6():20578. PubMed ID: 26838183
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic study and characterization of surfactin production by
    Rocha PM; Dos Santos Mendes AC; de Oliveira Júnior SD; de Araújo Padilha CE; de Sá Leitão ALO; da Costa Nogueira C; de Macedo GR; Dos Santos ES
    Prep Biochem Biotechnol; 2021; 51(3):300-308. PubMed ID: 32914662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An alternative approach to the traditional mixotrophic cultures of Haematococcus pluvialis Flotow (Chlorophyceae).
    Goksan T; Ak I; Gokpinar S
    J Microbiol Biotechnol; 2010 Sep; 20(9):1276-82. PubMed ID: 20890091
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Review on
    Oslan SNH; Shoparwe NF; Yusoff AH; Rahim AA; Chang CS; Tan JS; Oslan SN; Arumugam K; Ariff AB; Sulaiman AZ; Mohamed MS
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33578851
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancement of cell biomass and cell activity of astaxanthin-rich Haematococcus pluvialis.
    Sun H; Kong Q; Geng Z; Duan L; Yang M; Guan B
    Bioresour Technol; 2015 Jun; 186():67-73. PubMed ID: 25802050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of heterotrophic and mixotrophic cultivation of novel Micractinium sp. ME05 on vinasse and its scale up for biodiesel production.
    Engin IK; Cekmecelioglu D; Yücel AM; Oktem HA
    Bioresour Technol; 2018 Mar; 251():128-134. PubMed ID: 29274519
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sustainable biodiesel production from microalgae Graesiella emersonii through valorization of garden wastes-based vermicompost.
    Santhana Kumar V; Das Sarkar S; Das BK; Sarkar DJ; Gogoi P; Maurye P; Mitra T; Talukder AK; Ganguly S; Nag SK; Munilkumar S; Samanta S
    Sci Total Environ; 2022 Feb; 807(Pt 3):150995. PubMed ID: 34666095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mixotrophic cultivation of Chlorella for biomass production by using pH-stat culture medium: Glucose-Acetate-Phosphorus (GAP).
    Xie Z; Lin W; Liu J; Luo J
    Bioresour Technol; 2020 Oct; 313():123506. PubMed ID: 32512426
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Agro-industrial residues for the production of red biopigment by Monascus ruber: rice flour and sugarcane molasses.
    Da Silva VL; Ienczak JL; Moritz D
    Braz J Microbiol; 2021 Jun; 52(2):587-596. PubMed ID: 33651332
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cultivation of Spirulina maxima in medium supplemented with sugarcane vinasse.
    Dos Santos RR; Araújo OQF; de Medeiros JL; Chaloub RM
    Bioresour Technol; 2016 Mar; 204():38-48. PubMed ID: 26773377
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis.
    Fábregas J; Domínguez A; Regueiro M; Maseda A; Otero A
    Appl Microbiol Biotechnol; 2000 May; 53(5):530-5. PubMed ID: 10855711
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enrichment of
    Piasecka A; Krzemińska I; Tys J
    J Appl Phycol; 2017; 29(4):1735-1743. PubMed ID: 28775655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.