These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Workforce Shortage for Retinopathy of Prematurity Care and Emerging Role of Telehealth and Artificial Intelligence. Barrero-Castillero A; Corwin BK; VanderVeen DK; Wang JC Pediatr Clin North Am; 2020 Aug; 67(4):725-733. PubMed ID: 32650869 [TBL] [Abstract][Full Text] [Related]
44. Cost-effectiveness of Artificial Intelligence as a Decision-Support System Applied to the Detection and Grading of Melanoma, Dental Caries, and Diabetic Retinopathy. Gomez Rossi J; Rojas-Perilla N; Krois J; Schwendicke F JAMA Netw Open; 2022 Mar; 5(3):e220269. PubMed ID: 35289862 [TBL] [Abstract][Full Text] [Related]
45. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Bellemo V; Lim ZW; Lim G; Nguyen QD; Xie Y; Yip MYT; Hamzah H; Ho J; Lee XQ; Hsu W; Lee ML; Musonda L; Chandran M; Chipalo-Mutati G; Muma M; Tan GSW; Sivaprasad S; Menon G; Wong TY; Ting DSW Lancet Digit Health; 2019 May; 1(1):e35-e44. PubMed ID: 33323239 [TBL] [Abstract][Full Text] [Related]
46. The role of saliency maps in enhancing ophthalmologists' trust in artificial intelligence models. Wong CYT; Antaki F; Woodward-Court P; Ong AY; Keane PA Asia Pac J Ophthalmol (Phila); 2024; 13(4):100087. PubMed ID: 39069106 [TBL] [Abstract][Full Text] [Related]
47. Multimodal imaging interpreted by graders to detect re-activation of diabetic eye disease in previously treated patients: the EMERALD diagnostic accuracy study. Lois N; Cook J; Wang A; Aldington S; Mistry H; Maredza M; McAuley D; Aslam T; Bailey C; Chong V; Ghanchi F; Scanlon P; Sivaprasad S; Steel D; Styles C; Azuara-Blanco A; Prior L; Waugh N Health Technol Assess; 2021 May; 25(32):1-104. PubMed ID: 34060440 [TBL] [Abstract][Full Text] [Related]
48. [The application potential and direction of artificial intelligence in the prevention and treatment of glaucoma]. Zhuo YH; Wu J Zhonghua Yan Ke Za Zhi; 2023 Sep; 59(9):691-695. PubMed ID: 37670651 [TBL] [Abstract][Full Text] [Related]
49. Economic Evaluations of Artificial Intelligence in Ophthalmology. Ruamviboonsuk P; Chantra S; Seresirikachorn K; Ruamviboonsuk V; Sangroongruangsri S Asia Pac J Ophthalmol (Phila); 2021 Jul; 10(3):307-316. PubMed ID: 34261102 [TBL] [Abstract][Full Text] [Related]
50. Understanding required to consider AI applications to the field of ophthalmology. Tabuchi H Taiwan J Ophthalmol; 2022; 12(2):123-129. PubMed ID: 35813809 [TBL] [Abstract][Full Text] [Related]
51. Health Economic Implications of Artificial Intelligence Implementation for Ophthalmology in Australia: A Systematic Review. Pietris J; Lam A; Bacchi S; Gupta AK; Kovoor JG; Chan WO Asia Pac J Ophthalmol (Phila); 2022 Nov; 11(6):554-562. PubMed ID: 36218837 [TBL] [Abstract][Full Text] [Related]
52. Artificial Intelligence and Optical Coherence Tomography Imaging. Kapoor R; Whigham BT; Al-Aswad LA Asia Pac J Ophthalmol (Phila); 2019; 8(2):187-194. PubMed ID: 30997756 [TBL] [Abstract][Full Text] [Related]
54. Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy - Artificial intelligence versus clinician for screening. Shah P; Mishra DK; Shanmugam MP; Doshi B; Jayaraj H; Ramanjulu R Indian J Ophthalmol; 2020 Feb; 68(2):398-405. PubMed ID: 31957737 [TBL] [Abstract][Full Text] [Related]
55. Artificial Intelligence in Ophthalmology: Evolutions in Asia. Ruamviboonsuk P; Cheung CY; Zhang X; Raman R; Park SJ; Ting DSW Asia Pac J Ophthalmol (Phila); 2020; 9(2):78-84. PubMed ID: 32349114 [TBL] [Abstract][Full Text] [Related]
56. Deep learning in ophthalmology: The technical and clinical considerations. Ting DSW; Peng L; Varadarajan AV; Keane PA; Burlina PM; Chiang MF; Schmetterer L; Pasquale LR; Bressler NM; Webster DR; Abramoff M; Wong TY Prog Retin Eye Res; 2019 Sep; 72():100759. PubMed ID: 31048019 [TBL] [Abstract][Full Text] [Related]
57. The Current State of Artificial Intelligence in Neuro-Ophthalmology. A Review. Lapka M; Straňák Z Cesk Slov Oftalmol; 2024; 80(4):179-186. PubMed ID: 38538291 [TBL] [Abstract][Full Text] [Related]
58. Artificial intelligence-assisted diagnosis of ocular surface diseases. Zhang Z; Wang Y; Zhang H; Samusak A; Rao H; Xiao C; Abula M; Cao Q; Dai Q Front Cell Dev Biol; 2023; 11():1133680. PubMed ID: 36875760 [TBL] [Abstract][Full Text] [Related]