These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 36043842)
21. Inhibition of bacterial adhesion and biofilm formation by dual functional textured and nitric oxide releasing surfaces. Xu LC; Wo Y; Meyerhoff ME; Siedlecki CA Acta Biomater; 2017 Mar; 51():53-65. PubMed ID: 28087484 [TBL] [Abstract][Full Text] [Related]
22. A Novel Method to Reveal a Ureolytic Biofilm Attachment and In Situ Growth Monitoring by Electrochemical Impedance Spectroscopy. Romero MC; Ramos G; González I; Ramírez F Appl Biochem Biotechnol; 2021 May; 193(5):1379-1396. PubMed ID: 32700202 [TBL] [Abstract][Full Text] [Related]
23. Monitoring biofilm growth and dispersal in real-time with impedance biosensors. McGlennen M; Dieser M; Foreman CM; Warnat S J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 37653441 [TBL] [Abstract][Full Text] [Related]
24. Nitric Oxide-Mediated Induction of Dispersal in Pseudomonas aeruginosa Biofilms Is Inhibited by Flavohemoglobin Production and Is Enhanced by Imidazole. Zhu X; Oh HS; Ng YCB; Tang PYP; Barraud N; Rice SA Antimicrob Agents Chemother; 2018 Mar; 62(3):. PubMed ID: 29263060 [TBL] [Abstract][Full Text] [Related]
25. Heterologous expression of bacterial nitric oxide synthase gene: a potential biological method to control biofilm development in the environment. Liu P; Huang Q; Chen W Can J Microbiol; 2012 Mar; 58(3):336-44. PubMed ID: 22379956 [TBL] [Abstract][Full Text] [Related]
26. Nitric oxide treatment for the control of reverse osmosis membrane biofouling. Barnes RJ; Low JH; Bandi RR; Tay M; Chua F; Aung T; Fane AG; Kjelleberg S; Rice SA Appl Environ Microbiol; 2015 Apr; 81(7):2515-24. PubMed ID: 25636842 [TBL] [Abstract][Full Text] [Related]
27. Interfacial electrochemical electron transfer processes in bacterial biofilm environments on Au(111). Hu Y; Zhang J; Ulstrup J Langmuir; 2010 Jun; 26(11):9094-103. PubMed ID: 20334394 [TBL] [Abstract][Full Text] [Related]
28. Bactericidal and anti-biofilm effects of uncharged and cationic ultrasound-responsive nitric oxide microbubbles on LuTheryn G; Hind C; Campbell C; Crowther A; Wu Q; Keller SB; Glynne-Jones P; Sutton JM; Webb JS; Gray M; Wilks SA; Stride E; Carugo D Front Cell Infect Microbiol; 2022; 12():956808. PubMed ID: 35992170 [TBL] [Abstract][Full Text] [Related]
29. In situ monitoring of Shewanella oneidensis MR-1 biofilm growth on gold electrodes by using a Pt microelectrode. Bao H; Zheng Z; Yang B; Liu D; Li F; Zhang X; Li Z; Lei L Bioelectrochemistry; 2016 Jun; 109():95-100. PubMed ID: 26850925 [TBL] [Abstract][Full Text] [Related]
30. Characterization of Benchtop-Fabricated Arrays of Nanowrinkled Surface Electrodes as a Nitric Oxide Electrochemical Sensor. Peto-Gutiérrez C; Vázquez-Victorio G; Hautefeuille M Biosensors (Basel); 2023 Aug; 13(8):. PubMed ID: 37622879 [TBL] [Abstract][Full Text] [Related]
31. Control of Marine Bacteria and Diatom Biofouling by Constant and Alternating Potentials. Schwarze J; Schuhmann W; Rosenhahn A Langmuir; 2021 Jun; 37(24):7464-7472. PubMed ID: 34100615 [TBL] [Abstract][Full Text] [Related]
32. Anaerobic metabolism occurs in the substratum of gonococcal biofilms and may be sustained in part by nitric oxide. Falsetta ML; McEwan AG; Jennings MP; Apicella MA Infect Immun; 2010 May; 78(5):2320-8. PubMed ID: 20231417 [TBL] [Abstract][Full Text] [Related]
33. Dispersal of human and plant pathogens biofilms via nitric oxide donors at 4 °C. Marvasi M; Durie IA; Henríquez T; Satkute A; Matuszewska M; Prado RC AMB Express; 2016 Dec; 6(1):49. PubMed ID: 27457245 [TBL] [Abstract][Full Text] [Related]
34. Critical nitric oxide concentration for Pseudomonas aeruginosa biofilm reduction on polyurethane substrates. Neufeld BH; Reynolds MM Biointerphases; 2016 Sep; 11(3):031012. PubMed ID: 27604080 [TBL] [Abstract][Full Text] [Related]
35. Flexible Platform for In Situ Impedimetric Detection and Bioelectric Effect Treatment of Escherichia Coli Biofilms. Huiszoon RC; Subramanian S; Ramiah Rajasekaran P; Beardslee LA; Bentley WE; Ghodssi R IEEE Trans Biomed Eng; 2019 May; 66(5):1337-1345. PubMed ID: 30281429 [TBL] [Abstract][Full Text] [Related]
36. Hydrodynamic Effects on Biofilms at the Biointerface Using a Microfluidic Electrochemical Cell: Case Study of Pseudomonas sp. Zarabadi MP; Paquet-Mercier F; Charette SJ; Greener J Langmuir; 2017 Feb; 33(8):2041-2049. PubMed ID: 28147485 [TBL] [Abstract][Full Text] [Related]
37. Systematic analysis of the ability of Nitric Oxide donors to dislodge biofilms formed by Salmonella enterica and Escherichia coli O157:H7. Marvasi M; Chen C; Carrazana M; Durie IA; Teplitski M AMB Express; 2014; 4():42. PubMed ID: 24995149 [TBL] [Abstract][Full Text] [Related]
38. Salmonella enterica biofilm-mediated dispersal by nitric oxide donors in association with cellulose nanocrystal hydrogels. Marvasi M; Durie IA; McLamore ES; Vanegas DC; Chaturvedi P AMB Express; 2015; 5():28. PubMed ID: 26020015 [TBL] [Abstract][Full Text] [Related]
39. Online monitoring of biofilm growth and activity using a combined multi-channel impedimetric and amperometric sensor. Pires L; Sachsenheimer K; Kleintschek T; Waldbaur A; Schwartz T; Rapp BE Biosens Bioelectron; 2013 Sep; 47():157-63. PubMed ID: 23570679 [TBL] [Abstract][Full Text] [Related]
40. Segmented flow is controlling growth of catalytic biofilms in continuous multiphase microreactors. Karande R; Halan B; Schmid A; Buehler K Biotechnol Bioeng; 2014 Sep; 111(9):1831-40. PubMed ID: 24729096 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]