These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 36044063)
1. Principal component analysis of texture features for grading of meningioma: not effective from the peritumoral area but effective from the tumor area. Mori N; Mugikura S; Endo T; Endo H; Oguma Y; Li L; Ito A; Watanabe M; Kanamori M; Tominaga T; Takase K Neuroradiology; 2023 Feb; 65(2):257-274. PubMed ID: 36044063 [TBL] [Abstract][Full Text] [Related]
2. WHO grade I meningioma subtypes: MRI features and pathological analysis. Zhang T; Yu JM; Wang YQ; Yin DD; Fang LJ Life Sci; 2018 Nov; 213():50-56. PubMed ID: 30153449 [TBL] [Abstract][Full Text] [Related]
3. Radiomic Features of the Edema Region May Contribute to Grading Meningiomas With Peritumoral Edema. Guo Z; Tian Z; Shi F; Xu P; Zhang J; Ling C; Zeng Q J Magn Reson Imaging; 2023 Jul; 58(1):301-310. PubMed ID: 36259547 [TBL] [Abstract][Full Text] [Related]
4. Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging. Park YW; Oh J; You SC; Han K; Ahn SS; Choi YS; Chang JH; Kim SH; Lee SK Eur Radiol; 2019 Aug; 29(8):4068-4076. PubMed ID: 30443758 [TBL] [Abstract][Full Text] [Related]
5. Quantitative apparent diffusion coefficients in the characterization of brain tumors and associated peritumoral edema. Server A; Kulle B; Maehlen J; Josefsen R; Schellhorn T; Kumar T; Langberg CW; Nakstad PH Acta Radiol; 2009 Jul; 50(6):682-9. PubMed ID: 19449234 [TBL] [Abstract][Full Text] [Related]
6. Accuracy of Radiomics-Based Feature Analysis on Multiparametric Magnetic Resonance Images for Noninvasive Meningioma Grading. Laukamp KR; Shakirin G; Baeßler B; Thiele F; Zopfs D; Große Hokamp N; Timmer M; Kabbasch C; Perkuhn M; Borggrefe J World Neurosurg; 2019 Dec; 132():e366-e390. PubMed ID: 31476455 [TBL] [Abstract][Full Text] [Related]
7. Differential Diagnosis of Solitary Fibrous Tumor/Hemangiopericytoma and Angiomatous Meningioma Using Three-Dimensional Magnetic Resonance Imaging Texture Feature Model. Dong J; Yu M; Miao Y; Shen H; Sui Y; Liu Y; Han L; Li X; Lin M; Guo Y; Xie L Biomed Res Int; 2020; 2020():5042356. PubMed ID: 33344637 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of preoperative magnetic resonance imaging features and diagnostic effectiveness of grades II and III intracranial solitary fibroma. Ran Y; Wang X; Zhang Y; Chen R; Liu C; Ran Y; Wang W; Ma X; Wang M; Cheng J Eur J Med Res; 2024 Jul; 29(1):377. PubMed ID: 39030639 [TBL] [Abstract][Full Text] [Related]
9. Application of magnetic resonance fingerprinting to differentiate grade I transitional and fibrous meningiomas from meningothelial meningiomas. Zhang R; Shen Y; Bai Y; Zhang X; Wei W; Lin R; Feng Q; Wang M; Zhang M; Nittka M; Koerzdoerfer G; Wang M Quant Imaging Med Surg; 2021 Apr; 11(4):1447-1457. PubMed ID: 33816181 [TBL] [Abstract][Full Text] [Related]
10. Meningiomas: Preoperative predictive histopathological grading based on radiomics of MRI. Han Y; Wang T; Wu P; Zhang H; Chen H; Yang C Magn Reson Imaging; 2021 Apr; 77():36-43. PubMed ID: 33220449 [TBL] [Abstract][Full Text] [Related]
11. T1 and ADC histogram parameters may be an in vivo biomarker for predicting the grade, subtype, and proliferative activity of meningioma. Cao T; Jiang R; Zheng L; Zhang R; Chen X; Wang Z; Jiang P; Chen Y; Zhong T; Chen H; Wu P; Xue Y; Lin L Eur Radiol; 2023 Jan; 33(1):258-269. PubMed ID: 35953734 [TBL] [Abstract][Full Text] [Related]
12. Association of apparent diffusion coefficient with Ki-67 proliferation index, progesterone-receptor status and various histopathological parameters, and its utility in predicting the high grade in meningiomas. Bozdağ M; Er A; Ekmekçi S Acta Radiol; 2021 Mar; 62(3):401-413. PubMed ID: 32397733 [TBL] [Abstract][Full Text] [Related]
13. T2-Weighted Imaging and Apparent Diffusion Coefficient Histogram Parameters Predict Meningioma Consistency. Han T; Liu X; Sun J; Long C; Jiang J; Zhou F; Zhao Z; Zhang B; Jing M; Deng L; Zhang Y; Zhou J Acad Radiol; 2024 Jun; 31(6):2511-2520. PubMed ID: 38155025 [TBL] [Abstract][Full Text] [Related]
14. Multi-parametric MRI-based machine learning model for prediction of WHO grading in patients with meningiomas. Zhao Z; Nie C; Zhao L; Xiao D; Zheng J; Zhang H; Yan P; Jiang X; Zhao H Eur Radiol; 2024 Apr; 34(4):2468-2479. PubMed ID: 37812296 [TBL] [Abstract][Full Text] [Related]
15. Comparative Analysis of Diffusional Kurtosis Imaging, Diffusion Tensor Imaging, and Diffusion-Weighted Imaging in Grading and Assessing Cellular Proliferation of Meningiomas. Lin L; Bhawana R; Xue Y; Duan Q; Jiang R; Chen H; Chen X; Sun B; Lin H AJNR Am J Neuroradiol; 2018 Jun; 39(6):1032-1038. PubMed ID: 29748203 [TBL] [Abstract][Full Text] [Related]
16. Role of MR Morphology and Diffusion-Weighted Imaging in the Evaluation of Meningiomas: Radio-Pathologic Correlation. Ranabhat K; Bishokarma S; Agrawal P; Shrestha P; Panth R; Ghimire RK JNMA J Nepal Med Assoc; 2019; 57(215):37-44. PubMed ID: 31080244 [TBL] [Abstract][Full Text] [Related]
17. Grading meningiomas utilizing multiparametric MRI with inclusion of susceptibility weighted imaging and quantitative susceptibility mapping. Zhang S; Chiang GC; Knapp JM; Zecca CM; He D; Ramakrishna R; Magge RS; Pisapia DJ; Fine HA; Tsiouris AJ; Zhao Y; Heier LA; Wang Y; Kovanlikaya I J Neuroradiol; 2020 Jun; 47(4):272-277. PubMed ID: 31136748 [TBL] [Abstract][Full Text] [Related]
19. Preoperative Prediction of Solitary Fibrous Tumor/Hemangiopericytoma and Angiomatous Meningioma Using Magnetic Resonance Imaging Texture Analysis. Kanazawa T; Minami Y; Jinzaki M; Toda M; Yoshida K; Sasaki H World Neurosurg; 2018 Dec; 120():e1208-e1216. PubMed ID: 30240864 [TBL] [Abstract][Full Text] [Related]
20. Accuracy of deep learning to differentiate the histopathological grading of meningiomas on MR images: A preliminary study. Banzato T; Causin F; Della Puppa A; Cester G; Mazzai L; Zotti A J Magn Reson Imaging; 2019 Oct; 50(4):1152-1159. PubMed ID: 30896065 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]