BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36044173)

  • 1. Combination of ruxolitinib with ABT-737 exhibits synergistic effects in cells carrying concurrent JAK2
    Yuan J; Song J; Chen C; Lv X; Bai J; Yang J; Zhou Y
    Invest New Drugs; 2022 Dec; 40(6):1194-1205. PubMed ID: 36044173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The PIM inhibitor AZD1208 synergizes with ruxolitinib to induce apoptosis of ruxolitinib sensitive and resistant JAK2-V617F-driven cells and inhibit colony formation of primary MPN cells.
    Mazzacurati L; Lambert QT; Pradhan A; Griner LN; Huszar D; Reuther GW
    Oncotarget; 2015 Nov; 6(37):40141-57. PubMed ID: 26472029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cotargeting the JAK/STAT signaling pathway and histone deacetylase by ruxolitinib and vorinostat elicits synergistic effects against myeloproliferative neoplasms.
    Hao X; Xing W; Yuan J; Wang Y; Bai J; Bai J; Zhou Y
    Invest New Drugs; 2020 Jun; 38(3):610-620. PubMed ID: 31227936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autophagy inhibition potentiates ruxolitinib-induced apoptosis in JAK2
    Machado-Neto JA; Coelho-Silva JL; Santos FPS; Scheucher PS; Campregher PV; Hamerschlak N; Rego EM; Traina F
    Invest New Drugs; 2020 Jun; 38(3):733-745. PubMed ID: 31286322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery and evaluation of ZT55, a novel highly-selective tyrosine kinase inhibitor of JAK2
    Hu M; Xu C; Yang C; Zuo H; Chen C; Zhang D; Shi G; Wang W; Shi J; Zhang T
    J Exp Clin Cancer Res; 2019 Feb; 38(1):49. PubMed ID: 30717771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting PP2A-dependent autophagy enhances sensitivity to ruxolitinib in JAK2
    Courdy C; Platteeuw L; Ducau C; De Araujo I; Boet E; Sahal A; Saland E; Edmond V; Tavitian S; Bertoli S; Cougoul P; Granat F; Poillet L; Marty C; Plo I; Sarry JE; Manenti S; Mansat-De Mas V; Joffre C
    Blood Cancer J; 2023 Jul; 13(1):106. PubMed ID: 37423955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Angiogenesis in JAK2 V617F positive myeloproliferative neoplasms and ruxolitinib decrease VEGF, HIF-1 enesis in JAK2 V617F positive cells.
    Cheng Z; Fu J; Liu G; Zhang L; Xu Q; Wang SY
    Leuk Lymphoma; 2018 Jan; 59(1):196-203. PubMed ID: 28554272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metformin exerts multitarget antileukemia activity in JAK2
    Machado-Neto JA; Fenerich BA; Scopim-Ribeiro R; Eide CA; Coelho-Silva JL; Dechandt CRP; Fernandes JC; Rodrigues Alves APN; Scheucher PS; Simões BP; Alberici LC; de Figueiredo Pontes LL; Tognon CE; Druker BJ; Rego EM; Traina F
    Cell Death Dis; 2018 Feb; 9(3):311. PubMed ID: 29472557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low
    Makarik TV; Abdullaev AO; Nikulina EE; Treglazova SA; Stepanova EE; Subortseva IN; Kovrigina AM; Melikyan AL; Kulikov SM; Sudarikov AB
    Genes (Basel); 2021 Apr; 12(4):. PubMed ID: 33921387
    [No Abstract]   [Full Text] [Related]  

  • 10. Inhibition of interleukin-1β reduces myelofibrosis and osteosclerosis in mice with JAK2-V617F driven myeloproliferative neoplasm.
    Rai S; Grockowiak E; Hansen N; Luque Paz D; Stoll CB; Hao-Shen H; Mild-Schneider G; Dirnhofer S; Farady CJ; Méndez-Ferrer S; Skoda RC
    Nat Commun; 2022 Sep; 13(1):5346. PubMed ID: 36100613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ruxolitinib-induced defects in DNA repair cause sensitivity to PARP inhibitors in myeloproliferative neoplasms.
    Nieborowska-Skorska M; Maifrede S; Dasgupta Y; Sullivan K; Flis S; Le BV; Solecka M; Belyaeva EA; Kubovcakova L; Nawrocki M; Kirschner M; Zhao H; Prchal JT; Piwocka K; Moliterno AR; Wasik M; Koschmieder S; Green TR; Skoda RC; Skorski T
    Blood; 2017 Dec; 130(26):2848-2859. PubMed ID: 29042365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A role for reactive oxygen species in JAK2 V617F myeloproliferative neoplasm progression.
    Marty C; Lacout C; Droin N; Le Couédic JP; Ribrag V; Solary E; Vainchenker W; Villeval JL; Plo I
    Leukemia; 2013 Nov; 27(11):2187-95. PubMed ID: 23558526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CALR mutations screening in wild type JAK2(V617F) and MPL(W515K/L) Brazilian myeloproliferative neoplasm patients.
    Nunes DP; Lima LT; Chauffaille Mde L; Mitne-Neto M; Santos MT; Cliquet MG; Guerra-Shinohara EM
    Blood Cells Mol Dis; 2015 Oct; 55(3):236-40. PubMed ID: 26227853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of oncostatin M as a JAK2 V617F-dependent amplifier of cytokine production and bone marrow remodeling in myeloproliferative neoplasms.
    Hoermann G; Cerny-Reiterer S; Herrmann H; Blatt K; Bilban M; Gisslinger H; Gisslinger B; Müllauer L; Kralovics R; Mannhalter C; Valent P; Mayerhofer M
    FASEB J; 2012 Feb; 26(2):894-906. PubMed ID: 22051730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat shock protein 90 inhibitor is synergistic with JAK2 inhibitor and overcomes resistance to JAK2-TKI in human myeloproliferative neoplasm cells.
    Fiskus W; Verstovsek S; Manshouri T; Rao R; Balusu R; Venkannagari S; Rao NN; Ha K; Smith JE; Hembruff SL; Abhyankar S; McGuirk J; Bhalla KN
    Clin Cancer Res; 2011 Dec; 17(23):7347-58. PubMed ID: 21976548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. JAK2-V617F is a negative regulation factor of SHIP1 protein and thus influences the AKT signaling pathway in patients with Myeloproliferative neoplasm (MPN).
    Glück M; Dally L; Jücker M; Ehm P
    Int J Biochem Cell Biol; 2022 Aug; 149():106229. PubMed ID: 35609769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of JAK1/2 inhibition on bone marrow stromal cells of myeloproliferative neoplasm (MPN) patients and healthy individuals.
    Zacharaki D; Ghazanfari R; Li H; Lim HC; Scheding S
    Eur J Haematol; 2018 Jul; 101(1):57-67. PubMed ID: 29645296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of JAK2V617F mutation in Jordanian patients with myeloproliferative neoplasms.
    Jaradat SA; Khasawneh R; Kamal N; Matalka I; Al-Bishtawi M; Al-Sweedan S; Ayesh MH
    Hematol Oncol Stem Cell Ther; 2015 Dec; 8(4):160-6. PubMed ID: 26256826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TET2, ASXL1, IDH1, IDH2, and c-CBL genes in JAK2- and MPL-negative myeloproliferative neoplasms.
    Martínez-Avilés L; Besses C; Álvarez-Larrán A; Torres E; Serrano S; Bellosillo B
    Ann Hematol; 2012 Apr; 91(4):533-41. PubMed ID: 21904853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms for mTORC1 activation and synergistic induction of apoptosis by ruxolitinib and BH3 mimetics or autophagy inhibitors in JAK2-V617F-expressing leukemic cells including newly established PVTL-2.
    Ishida S; Akiyama H; Umezawa Y; Okada K; Nogami A; Oshikawa G; Nagao T; Miura O
    Oncotarget; 2018 Jun; 9(42):26834-26851. PubMed ID: 29928488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.