BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 36044259)

  • 1. Diverse states and stimuli tune olfactory receptor expression levels to modulate food-seeking behavior.
    McLachlan IG; Kramer TS; Dua M; DiLoreto EM; Gomes MA; Dag U; Srinivasan J; Flavell SW
    Elife; 2022 Aug; 11():. PubMed ID: 36044259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cyclic nucleotide gated channel subunit CNG-1 instructs behavioral outputs in Caenorhabditis elegans by coincidence detection of nutritional status and olfactory input.
    He C; Altshuler-Keylin S; Daniel D; L'Etoile ND; O'Halloran D
    Neurosci Lett; 2016 Oct; 632():71-8. PubMed ID: 27561605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans.
    Troemel ER; Kimmel BE; Bargmann CI
    Cell; 1997 Oct; 91(2):161-9. PubMed ID: 9346234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Context-dependent reversal of odorant preference is driven by inversion of the response in a single sensory neuron type.
    Khan M; Hartmann AH; O'Donnell MP; Piccione M; Pandey A; Chao PH; Dwyer ND; Bargmann CI; Sengupta P
    PLoS Biol; 2022 Jun; 20(6):e3001677. PubMed ID: 35696430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EGL-4/PKG regulates the role of an interneuron in a chemotaxis circuit of C. elegans through mediating integration of sensory signals.
    Hino T; Hirai S; Ishihara T; Fujiwara M
    Genes Cells; 2021 Jun; 26(6):411-425. PubMed ID: 33817914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening of odor-receptor pairs in Caenorhabditis elegans reveals different receptors for high and low odor concentrations.
    Taniguchi G; Uozumi T; Kiriyama K; Kamizaki T; Hirotsu T
    Sci Signal; 2014 Apr; 7(323):ra39. PubMed ID: 24782565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Diacylglycerol Content in Olfactory Neurons Determines Forgetting or Retrieval of Olfactory Memory in
    Arai M; Kurokawa I; Arakane H; Kitazono T; Ishihara T
    J Neurosci; 2022 Oct; 42(43):8039-8053. PubMed ID: 36104280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental history modulates adult olfactory behavioral preferences via regulation of chemoreceptor expression in Caenorhabditiselegans.
    Kyani-Rogers T; Philbrook A; McLachlan IG; Flavell SW; O'Donnell MP; Sengupta P
    Genetics; 2022 Nov; 222(3):. PubMed ID: 36094348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genes required for the functions of olfactory AWA neuron regulate the longevity of Caenorhabditis elegans in an insulin/IGF signaling-dependent fashion.
    Shen LL; Du M; Lin XF; Cai T; Wang DY
    Neurosci Bull; 2010 Apr; 26(2):91-103. PubMed ID: 20332814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl.
    Sengupta P; Chou JH; Bargmann CI
    Cell; 1996 Mar; 84(6):899-909. PubMed ID: 8601313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circuit mechanisms encoding odors and driving aging-associated behavioral declines in Caenorhabditis elegans.
    Leinwand SG; Yang CJ; Bazopoulou D; Chronis N; Srinivasan J; Chalasani SH
    Elife; 2015 Sep; 4():e10181. PubMed ID: 26394000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C. elegans AWA Olfactory Neurons Fire Calcium-Mediated All-or-None Action Potentials.
    Liu Q; Kidd PB; Dobosiewicz M; Bargmann CI
    Cell; 2018 Sep; 175(1):57-70.e17. PubMed ID: 30220455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple Signaling Pathways Coordinately Regulate Forgetting of Olfactory Adaptation through Control of Sensory Responses in
    Kitazono T; Hara-Kuge S; Matsuda O; Inoue A; Fujiwara M; Ishihara T
    J Neurosci; 2017 Oct; 37(42):10240-10251. PubMed ID: 28924007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arrestin-mediated desensitization enables intraneuronal olfactory discrimination in
    Merritt DM; MacKay-Clackett I; Almeida SMT; Tran C; Ansar S; van der Kooy D
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2116957119. PubMed ID: 35878038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An interneuronal chemoreceptor required for olfactory imprinting in C. elegans.
    Remy JJ; Hobert O
    Science; 2005 Jul; 309(5735):787-90. PubMed ID: 16051801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feeding state, insulin and NPR-1 modulate chemoreceptor gene expression via integration of sensory and circuit inputs.
    Gruner M; Nelson D; Winbush A; Hintz R; Ryu L; Chung SH; Kim K; Gabel CV; van der Linden AM
    PLoS Genet; 2014 Oct; 10(10):e1004707. PubMed ID: 25357003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental signals modulate olfactory acuity, discrimination, and memory in Caenorhabditis elegans.
    Colbert HA; Bargmann CI
    Learn Mem; 1997; 4(2):179-91. PubMed ID: 10456062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear entry of a cGMP-dependent kinase converts transient into long-lasting olfactory adaptation.
    Lee JI; O'Halloran DM; Eastham-Anderson J; Juang BT; Kaye JA; Scott Hamilton O; Lesch B; Goga A; L'Etoile ND
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6016-21. PubMed ID: 20220099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The lin-11 LIM homeobox gene specifies olfactory and chemosensory neuron fates in C. elegans.
    Sarafi-Reinach TR; Melkman T; Hobert O; Sengupta P
    Development; 2001 Sep; 128(17):3269-81. PubMed ID: 11546744
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.