These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36044708)

  • 1. Carbohydrate intake in recovery from aerobic exercise differentiates skeletal muscle microRNA expression.
    Margolis LM; Carrigan CT; Murphy NE; DiBella MN; Wilson MA; Whitney CC; Howard EE; Pasiakos SM; Rivas DA
    Am J Physiol Endocrinol Metab; 2022 Nov; 323(5):E435-E447. PubMed ID: 36044708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PI3K-AKT-FOXO1 pathway targeted by skeletal muscle microRNA to suppress proteolytic gene expression in response to carbohydrate intake during aerobic exercise.
    Margolis LM; Berryman CE; Murphy NE; Carrigan CT; Young AJ; Carbone JW; Pasiakos SM
    Physiol Rep; 2018 Dec; 6(23):e13931. PubMed ID: 30548426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circulating and skeletal muscle microRNA profiles are more sensitive to sustained aerobic exercise than energy balance in males.
    Margolis LM; Hatch-McChesney A; Allen JT; DiBella MN; Carrigan CT; Murphy NE; Karl JP; Gwin JA; Hennigar SR; McClung JP; Pasiakos SM
    J Physiol; 2022 Sep; 600(17):3951-3963. PubMed ID: 35822542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exercising with low muscle glycogen content increases fat oxidation and decreases endogenous, but not exogenous carbohydrate oxidation.
    Margolis LM; Wilson MA; Whitney CC; Carrigan CT; Murphy NE; Hatch AM; Montain SJ; Pasiakos SM
    Metabolism; 2019 Aug; 97():1-8. PubMed ID: 31095946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans.
    Howarth KR; Moreau NA; Phillips SM; Gibala MJ
    J Appl Physiol (1985); 2009 Apr; 106(4):1394-402. PubMed ID: 19036894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle protein synthesis and gene expression during recovery from aerobic exercise in the fasted and fed states.
    Harber MP; Konopka AR; Jemiolo B; Trappe SW; Trappe TA; Reidy PT
    Am J Physiol Regul Integr Comp Physiol; 2010 Nov; 299(5):R1254-62. PubMed ID: 20720176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-ingestion of protein or a protein hydrolysate with carbohydrate enhances anabolic signaling, but not glycogen resynthesis, following recovery from prolonged aerobic exercise in trained cyclists.
    Cogan KE; Evans M; Iuliano E; Melvin A; Susta D; Neff K; De Vito G; Egan B
    Eur J Appl Physiol; 2018 Feb; 118(2):349-359. PubMed ID: 29214461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initiating aerobic exercise with low glycogen content reduces markers of myogenesis but not mTORC1 signaling.
    Margolis LM; Wilson MA; Whitney CC; Carrigan CT; Murphy NE; Hatch-McChesney A; Pasiakos SM
    J Int Soc Sports Nutr; 2021 Jul; 18(1):56. PubMed ID: 34246303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coingestion of protein and carbohydrate in the early recovery phase, compared with carbohydrate only, improves endurance performance despite similar glycogen degradation and AMPK phosphorylation.
    Dahl MA; Areta JL; Jeppesen PB; Birk JB; Johansen EI; Ingemann-Hansen T; Hansen M; Skålhegg BS; Ivy JL; Wojtaszewski JFP; Overgaard K; Jensen J
    J Appl Physiol (1985); 2020 Aug; 129(2):297-310. PubMed ID: 32584664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-exercise carbohydrate and energy availability induce independent effects on skeletal muscle cell signalling and bone turnover: implications for training adaptation.
    Hammond KM; Sale C; Fraser W; Tang J; Shepherd SO; Strauss JA; Close GL; Cocks M; Louis J; Pugh J; Stewart C; Sharples AP; Morton JP
    J Physiol; 2019 Sep; 597(18):4779-4796. PubMed ID: 31364768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Post-Exercise Carbohydrate-Protein Ingestion on Muscle Glycogen Metabolism in Recovery and Subsequent Running Exercise.
    Alghannam AF; Jedrzejewski D; Bilzon J; Thompson D; Tsintzas K; Betts JA
    Int J Sport Nutr Exerc Metab; 2016 Dec; 26(6):572-580. PubMed ID: 27097042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postexercise protein-carbohydrate and carbohydrate supplements increase muscle glycogen in men and women.
    Tarnopolsky MA; Bosman M; Macdonald JR; Vandeputte D; Martin J; Roy BD
    J Appl Physiol (1985); 1997 Dec; 83(6):1877-83. PubMed ID: 9390958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration.
    Stellingwerff T; Spriet LL; Watt MJ; Kimber NE; Hargreaves M; Hawley JA; Burke LM
    Am J Physiol Endocrinol Metab; 2006 Feb; 290(2):E380-8. PubMed ID: 16188909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbohydrate supplementation during prolonged cycling exercise spares muscle glycogen but does not affect intramyocellular lipid use.
    Stellingwerff T; Boon H; Gijsen AP; Stegen JH; Kuipers H; van Loon LJ
    Pflugers Arch; 2007 Jul; 454(4):635-47. PubMed ID: 17333244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Muscle Glycogen Availability on the Capacity for Repeated Exercise in Man.
    Alghannam AF; Jedrzejewski D; Tweddle MG; Gribble H; Bilzon J; Thompson D; Tsintzas K; Betts JA
    Med Sci Sports Exerc; 2016 Jan; 48(1):123-31. PubMed ID: 26197030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise in the fasted state facilitates fibre type-specific intramyocellular lipid breakdown and stimulates glycogen resynthesis in humans.
    De Bock K; Richter EA; Russell AP; Eijnde BO; Derave W; Ramaekers M; Koninckx E; Léger B; Verhaeghe J; Hespel P
    J Physiol; 2005 Apr; 564(Pt 2):649-60. PubMed ID: 15705646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High rates of muscle glycogen resynthesis after exhaustive exercise when carbohydrate is coingested with caffeine.
    Pedersen DJ; Lessard SJ; Coffey VG; Churchley EG; Wootton AM; Ng T; Watt MJ; Hawley JA
    J Appl Physiol (1985); 2008 Jul; 105(1):7-13. PubMed ID: 18467543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbohydrate restriction following strenuous glycogen-depleting exercise does not potentiate the acute molecular response associated with mitochondrial biogenesis in human skeletal muscle.
    Ramos C; Cheng AJ; Kamandulis S; Subocius A; Brazaitis M; Venckunas T; Chaillou T
    Eur J Appl Physiol; 2021 Apr; 121(4):1219-1232. PubMed ID: 33564963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postexercise repletion of muscle energy stores with fructose or glucose in mixed meals.
    Rosset R; Lecoultre V; Egli L; Cros J; Dokumaci AS; Zwygart K; Boesch C; Kreis R; Schneiter P; Tappy L
    Am J Clin Nutr; 2017 Mar; 105(3):609-617. PubMed ID: 28100512
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of glycogen availability on human skeletal muscle protein turnover during exercise and recovery.
    Howarth KR; Phillips SM; MacDonald MJ; Richards D; Moreau NA; Gibala MJ
    J Appl Physiol (1985); 2010 Aug; 109(2):431-8. PubMed ID: 20489032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.