These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36044712)

  • 1. Directed Evolution of Flavin-Dependent Halogenases for Site- and Atroposelective Halogenation of 3-Aryl-4(3
    Snodgrass HM; Mondal D; Lewis JC
    J Am Chem Soc; 2022 Sep; 144(36):16676-16682. PubMed ID: 36044712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying and Engineering Flavin Dependent Halogenases for Selective Biocatalysis.
    Lewis JC
    Acc Chem Res; 2024 Aug; 57(15):2067-2079. PubMed ID: 39038085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric catalysis by flavin-dependent halogenases.
    Jiang Y; Lewis JC
    Chirality; 2023 Aug; 35(8):452-460. PubMed ID: 36916449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Single-Component Flavin Reductase/Flavin-Dependent Halogenase AetF is a Versatile Catalyst for Selective Bromination and Iodination of Arenes and Olefins.
    Jiang Y; Snodgrass HM; Zubi YS; Roof CV; Guan Y; Mondal D; Honeycutt NH; Lee JW; Lewis RD; Martinez CA; Lewis JC
    Angew Chem Int Ed Engl; 2022 Dec; 61(51):e202214610. PubMed ID: 36282507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding and Improving the Activity of Flavin-Dependent Halogenases via Random and Targeted Mutagenesis.
    Andorfer MC; Lewis JC
    Annu Rev Biochem; 2018 Jun; 87():159-185. PubMed ID: 29589959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioselective Desymmetrization of Methylenedianilines via Enzyme-Catalyzed Remote Halogenation.
    Payne JT; Butkovich PH; Gu Y; Kunze KN; Park HJ; Wang DS; Lewis JC
    J Am Chem Soc; 2018 Jan; 140(2):546-549. PubMed ID: 29294291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective C-H Halogenation of Alkenes and Alkynes Using Flavin-Dependent Halogenases.
    Jiang Y; Kim A; Olive C; Lewis JC
    Angew Chem Int Ed Engl; 2024 Mar; 63(13):e202317860. PubMed ID: 38280216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond.
    Podzelinska K; Latimer R; Bhattacharya A; Vining LC; Zechel DL; Jia Z
    J Mol Biol; 2010 Mar; 397(1):316-31. PubMed ID: 20080101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures, mechanisms and applications of flavin-dependent halogenases.
    Phintha A; Prakinee K; Chaiyen P
    Enzymes; 2020; 47():327-364. PubMed ID: 32951827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flavin-dependent halogenases catalyze enantioselective olefin halocyclization.
    Mondal D; Fisher BF; Jiang Y; Lewis JC
    Nat Commun; 2021 Jun; 12(1):3268. PubMed ID: 34075034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Laboratory-Evolved Flavin-Dependent Halogenases Affords a Computational Model for Predicting Halogenase Site Selectivity.
    Andorfer MC; Evans D; Yang S; He CQ; Girlich AM; Vergara-Coll J; Sukumar N; Houk KN; Lewis JC
    Chem Catal; 2022 Oct; 2(10):2658-2674. PubMed ID: 36569427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissecting the low catalytic capability of flavin-dependent halogenases.
    Phintha A; Prakinee K; Jaruwat A; Lawan N; Visitsatthawong S; Kantiwiriyawanitch C; Songsungthong W; Trisrivirat D; Chenprakhon P; Mulholland A; van Pée KH; Chitnumsub P; Chaiyen P
    J Biol Chem; 2021; 296():100068. PubMed ID: 33465708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Mechanisms of Hypohalous Acid Formation and Electrophilic Halogenation by Non-Native Halogenases.
    Prakinee K; Lawan N; Phintha A; Visitsatthawong S; Chitnumsub P; Jitkaroon W; Chaiyen P
    Angew Chem Int Ed Engl; 2024 Jun; 63(24):e202403858. PubMed ID: 38606607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tri-enzyme fusion of tryptophan halogenase achieves a concise strategy for coenzyme self-sufficiency and the continuous halogenation of L-tryptophan.
    Liu HY; Qian F; Zhang HM; Gui Q; Wang YW; Wang P
    Biotechnol J; 2024 Apr; 19(4):e2300557. PubMed ID: 38581092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application and Modification of Flavin-Dependent Halogenases.
    van Pée KH; Milbredt D; Patallo EP; Weichold V; Gajewi M
    Methods Enzymol; 2016; 575():65-92. PubMed ID: 27417925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the stability and catalyst lifetime of the halogenase RebH by directed evolution.
    Poor CB; Andorfer MC; Lewis JC
    Chembiochem; 2014 Jun; 15(9):1286-9. PubMed ID: 24849696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal.
    Moritzer AC; Minges H; Prior T; Frese M; Sewald N; Niemann HH
    J Biol Chem; 2019 Feb; 294(7):2529-2542. PubMed ID: 30559288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavin Adenine Dinucleotide-Dependent Halogenase XanH and Engineering of Multifunctional Fusion Halogenases.
    Kong L; Wang Q; Deng Z; You D
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32651204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed evolution of RebH for site-selective halogenation of large biologically active molecules.
    Payne JT; Poor CB; Lewis JC
    Angew Chem Int Ed Engl; 2015 Mar; 54(14):4226-30. PubMed ID: 25678465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed Evolution of RebH for Catalyst-Controlled Halogenation of Indole C-H Bonds.
    Andorfer MC; Park HJ; Vergara-Coll J; Lewis JC
    Chem Sci; 2016 Jun; 7(6):3720-3729. PubMed ID: 27347367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.