These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36044815)

  • 1. Threshold conditions for transversal modes of tunable plasmonic nanolasers shaped as single and twin graphene-covered circular quantum wires.
    Herasymova DO; Dukhopelnykov SV; Natarov DM; Zinenko TL; Lucido M; Nosich AI
    Nanotechnology; 2022 Sep; 33(49):. PubMed ID: 36044815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electromagnetic analysis of the lasing thresholds of hybrid plasmon modes of a silver tube nanolaser with active core and active shell.
    Natarov DM; Benson TM; Nosich AI
    Beilstein J Nanotechnol; 2019; 10():294-304. PubMed ID: 30800568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lasing frequencies and thresholds of the dipole supermodes in an active microdisk concentrically coupled with a passive microring.
    Smotrova EI; Benson TM; Sewell P; Ctyroky J; Nosich AI
    J Opt Soc Am A Opt Image Sci Vis; 2008 Nov; 25(11):2884-92. PubMed ID: 18978871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time tunable lasing from plasmonic nanocavity arrays.
    Yang A; Hoang TB; Dridi M; Deeb C; Mikkelsen MH; Schatz GC; Odom TW
    Nat Commun; 2015 Apr; 6():6939. PubMed ID: 25891212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-threshold lasing eigenmodes of an infinite periodic chain of quantum wires.
    Byelobrov VO; Ctyroky J; Benson TM; Sauleau R; Altintas A; Nosich AI
    Opt Lett; 2010 Nov; 35(21):3634-6. PubMed ID: 21042374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical coupling of an active microdisk to a passive one: effect on the lasing thresholds of the whispering-gallery supermodes.
    Smotrova EI; Nosich AI
    Opt Lett; 2013 Jun; 38(12):2059-61. PubMed ID: 23938976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric plasmonic supermodes in nonlinear graphene multilayers.
    Wang F; Wang Z; Qin C; Wang B; Long H; Wang K; Lu P
    Opt Express; 2017 Jan; 25(2):1234-1241. PubMed ID: 28158007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room-Temperature Gate Voltage Modulation of Plasmonic Nanolasers.
    Huang ZT; Chien TW; Cheng CW; Li CC; Chen KP; Gwo S; Lu TC
    ACS Nano; 2023 Apr; 17(7):6488-6496. PubMed ID: 36989057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing.
    Lu YJ; Wang CY; Kim J; Chen HY; Lu MY; Chen YC; Chang WH; Chen LJ; Stockman MI; Shih CK; Gwo S
    Nano Lett; 2014 Aug; 14(8):4381-8. PubMed ID: 25029207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full-Spectrum Analysis of Perovskite-Based Surface Plasmon Nanolasers.
    Cheng PJ; Zheng QY; Hsu CY; Li H; Hong KB; Zhu Y; Cui Q; Xu C; Lu TC; Lin TR
    Nanoscale Res Lett; 2020 Mar; 15(1):66. PubMed ID: 32227260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring Eigenmodes at Spectral Singularities in Graphene-based PT Systems.
    Zhang W; Wu T; Zhang X
    Sci Rep; 2017 Sep; 7(1):11407. PubMed ID: 28900137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perovskite Quantum Dot Lasing in a Gap-Plasmon Nanocavity with Ultralow Threshold.
    Hsieh YH; Hsu BW; Peng KN; Lee KW; Chu CW; Chang SW; Lin HW; Yen TJ; Lu YJ
    ACS Nano; 2020 Sep; 14(9):11670-11676. PubMed ID: 32701270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities.
    Jiang M; Li J; Xu C; Wang S; Shan C; Xuan B; Ning Y; Shen D
    Opt Express; 2014 Oct; 22(20):23836-50. PubMed ID: 25321962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic lasing of nanocavity embedding in metallic nanoantenna array.
    Zhang C; Lu Y; Ni Y; Li M; Mao L; Liu C; Zhang D; Ming H; Wang P
    Nano Lett; 2015 Feb; 15(2):1382-7. PubMed ID: 25622291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purified plasmonic lasing with strong polarization selectivity by reflection.
    Li G; Liu X; Wang X; Yuan Y; Sum TC; Xiong Q
    Opt Express; 2015 Jun; 23(12):15657-69. PubMed ID: 26193545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon modes of circular cylindrical double-layer graphene.
    Zhao T; Hu M; Zhong R; Chen X; Zhang P; Gong S; Zhang C; Liu S
    Opt Express; 2016 Sep; 24(18):20461-71. PubMed ID: 27607651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Engineering in Plasmon Nanolasers.
    Wang D; Wang W; Knudson MP; Schatz GC; Odom TW
    Chem Rev; 2018 Mar; 118(6):2865-2881. PubMed ID: 29039939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lasing action in strongly coupled plasmonic nanocavity arrays.
    Zhou W; Dridi M; Suh JY; Kim CH; Co DT; Wasielewski MR; Schatz GC; Odom TW
    Nat Nanotechnol; 2013 Jul; 8(7):506-11. PubMed ID: 23770807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antiboding and bonding lasing modes with low gain threshold in nonlocal metallic nanoshell.
    Huang Y; Xiao JJ; Gao L
    Opt Express; 2015 Apr; 23(7):8818-28. PubMed ID: 25968719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon lasers: coherent nanoscopic light sources.
    Deeb C; Pelouard JL
    Phys Chem Chem Phys; 2017 Nov; 19(44):29731-29741. PubMed ID: 29090287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.