These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 36045098)
1. Can sprouting reduce phytate and improve the nutritional composition and nutrient bioaccessibility in cereals and legumes? Elliott H; Woods P; Green BD; Nugent AP Nutr Bull; 2022 Jun; 47(2):138-156. PubMed ID: 36045098 [TBL] [Abstract][Full Text] [Related]
2. Phytase-mediated mineral solubilization from cereals under in vitro gastric conditions. Nielsen AV; Meyer AS J Sci Food Agric; 2016 Aug; 96(11):3755-61. PubMed ID: 26678688 [TBL] [Abstract][Full Text] [Related]
3. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Gibson RS; Bailey KB; Gibbs M; Ferguson EL Food Nutr Bull; 2010 Jun; 31(2 Suppl):S134-46. PubMed ID: 20715598 [TBL] [Abstract][Full Text] [Related]
4. The effect of food processing on phytate hydrolysis and availability of iron and zinc. Sandberg AS Adv Exp Med Biol; 1991; 289():499-508. PubMed ID: 1654732 [TBL] [Abstract][Full Text] [Related]
5. Bioavailability of minerals in legumes. Sandberg AS Br J Nutr; 2002 Dec; 88 Suppl 3():S281-5. PubMed ID: 12498628 [TBL] [Abstract][Full Text] [Related]
6. Screening for anti-nutritional compounds in complementary foods and food aid products for infants and young children. Roos N; Sørensen JC; Sørensen H; Rasmussen SK; Briend A; Yang Z; Huffman SL Matern Child Nutr; 2013 Jan; 9 Suppl 1(Suppl 1):47-71. PubMed ID: 23167584 [TBL] [Abstract][Full Text] [Related]
7. Potential of phytase-mediated iron release from cereal-based foods: a quantitative view. Nielsen AV; Tetens I; Meyer AS Nutrients; 2013 Aug; 5(8):3074-98. PubMed ID: 23917170 [TBL] [Abstract][Full Text] [Related]
8. Effect of dephytinization on bioavailability of iron, calcium and zinc from infant cereals assessed in the Caco-2 cell model. Frontela C; Scarino ML; Ferruzza S; Ros G; Martínez C World J Gastroenterol; 2009 Apr; 15(16):1977-84. PubMed ID: 19399930 [TBL] [Abstract][Full Text] [Related]
9. The effect of germination on the phytase activity, phytate and total phosphorus contents of some Nigerian-grown grain legumes. Azeke MA; Elsanhoty RM; Egielewa SJ; Eigbogbo MU J Sci Food Agric; 2011 Jan; 91(1):75-9. PubMed ID: 20859988 [TBL] [Abstract][Full Text] [Related]
10. Barriers impairing mineral bioaccessibility and bioavailability in plant-based foods and the perspectives for food processing. Rousseau S; Kyomugasho C; Celus M; Hendrickx MEG; Grauwet T Crit Rev Food Sci Nutr; 2020; 60(5):826-843. PubMed ID: 30632768 [TBL] [Abstract][Full Text] [Related]
11. Strategies to increase the bioaccessibility and bioavailability of iron and zinc from cereal products. Arafsha SM; Aslam MF; Ellis PR; Latunde-Dada GO; Sharp PA Proc Nutr Soc; 2023 Jul; ():1-7. PubMed ID: 37395294 [TBL] [Abstract][Full Text] [Related]
12. Phytate, iron, zinc, and calcium content of common Bolivian foods and their estimated mineral bioavailability. Castro-Alba V; Lazarte CE; Bergenståhl B; Granfeldt Y Food Sci Nutr; 2019 Sep; 7(9):2854-2865. PubMed ID: 31572579 [TBL] [Abstract][Full Text] [Related]
13. Globoids and Phytase: The Mineral Storage and Release System in Seeds. Madsen CK; Brinch-Pedersen H Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33053867 [TBL] [Abstract][Full Text] [Related]
14. Contribution of intestinal- and cereal-derived phytase activity on phytate degradation in young broilers. Morgan NK; Walk CL; Bedford MR; Burton EJ Poult Sci; 2015 Jul; 94(7):1577-83. PubMed ID: 25910902 [TBL] [Abstract][Full Text] [Related]
15. Revisiting phytate-element interactions: implications for iron, zinc and calcium bioavailability, with emphasis on legumes. Zhang YY; Stockmann R; Ng K; Ajlouni S Crit Rev Food Sci Nutr; 2022; 62(6):1696-1712. PubMed ID: 33190514 [No Abstract] [Full Text] [Related]
16. Development of the FAO/INFOODS/IZINCG Global Food Composition Database for Phytate. Dahdouh S; Grande F; Espinosa SN; Vincent A; Gibson R; Bailey K; King J; Rittenschober D; Charrondière UR J Food Compost Anal; 2019 May; 78():42-48. PubMed ID: 31057213 [TBL] [Abstract][Full Text] [Related]
17. Absorption studies show that phytase from Aspergillus niger significantly increases iron and zinc bioavailability from phytate-rich foods. Troesch B; Jing H; Laillou A; Fowler A Food Nutr Bull; 2013 Jun; 34(2 Suppl):S90-101. PubMed ID: 24050000 [TBL] [Abstract][Full Text] [Related]
18. Phytate in pig and poultry nutrition. Humer E; Schwarz C; Schedle K J Anim Physiol Anim Nutr (Berl); 2015 Aug; 99(4):605-25. PubMed ID: 25405653 [TBL] [Abstract][Full Text] [Related]
19. Effect of fermentation on nutrient composition, antinutrients, and mineral bioaccessibility of finger millet based Injera: A traditional Ethiopian food. Endalew HW; Atlabachew M; Karavoltsos S; Sakellari A; Aslam MF; Allen L; Griffiths H; Zoumpoulakis P; Kanellou A; Yehuala TF; Abera MK; Tenagashaw MW; Cherie HA Food Res Int; 2024 Aug; 190():114635. PubMed ID: 38945624 [TBL] [Abstract][Full Text] [Related]