These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 36045098)

  • 21. Complementary feeding and effect of spontaneous fermentation on anti-nutritional factors of selected cereal-based complementary foods.
    Asres DT; Nana A; Nega G
    BMC Pediatr; 2018 Dec; 18(1):394. PubMed ID: 30579346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains.
    Abid N; Khatoon A; Maqbool A; Irfan M; Bashir A; Asif I; Shahid M; Saeed A; Brinch-Pedersen H; Malik KA
    Transgenic Res; 2017 Feb; 26(1):109-122. PubMed ID: 27687031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selection and use of phytate-degrading LAB to improve cereal-based products by mineral solubilization during dough fermentation.
    Anastasio M; Pepe O; Cirillo T; Palomba S; Blaiotta G; Villani F
    J Food Sci; 2010; 75(1):M28-35. PubMed ID: 20492182
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trait stacking simultaneously enhances provitamin A carotenoid and mineral bioaccessibility in biofortified
    Dzakovich MP; Debelo H; Albertsen MC; Che P; Jones TJ; Simon MK; Zhao ZY; Glassman K; Ferruzzi MG
    Food Funct; 2023 Jul; 14(15):7053-7065. PubMed ID: 37449680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The impact of steeping, germination and hydrothermal processing of wheat (Triticum aestivum L.) grains on phytate hydrolysis and the distribution, speciation and bio-accessibility of iron and zinc elements.
    Lemmens E; De Brier N; Spiers KM; Ryan C; Garrevoet J; Falkenberg G; Goos P; Smolders E; Delcour JA
    Food Chem; 2018 Oct; 264():367-376. PubMed ID: 29853389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The role of phytates in human nutrition].
    Shikh EV; Makhova AA; Dorogun OB; Elizarova EV
    Vopr Pitan; 2023; 92(4):20-28. PubMed ID: 37801451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of phytate and minerals on the bioavailability of oxalate from food.
    Israr B; Frazier RA; Gordon MH
    Food Chem; 2013 Dec; 141(3):1690-3. PubMed ID: 23870879
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of germination and fermentation on bioaccessibility of zinc and iron from food grains.
    Hemalatha S; Platel K; Srinivasan K
    Eur J Clin Nutr; 2007 Mar; 61(3):342-8. PubMed ID: 16969377
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Degradation of phytic acid in cereal porridges improves iron absorption by human subjects.
    Hurrell RF; Reddy MB; Juillerat MA; Cook JD
    Am J Clin Nutr; 2003 May; 77(5):1213-9. PubMed ID: 12716674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phytase from Citrobacter koseri PM-7: Enhanced production using statistical method and application in ameliorating mineral bioaccessibility and protein digestibility of high-phytate food.
    Tripathi P; A JL; Kapoor M
    Prep Biochem Biotechnol; 2018 Jan; 48(1):84-91. PubMed ID: 29194015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phytic acid interactions in food systems.
    Cheryan M
    Crit Rev Food Sci Nutr; 1980; 13(4):297-335. PubMed ID: 7002470
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The phytate and mineral content of some cereals, cereal products, legumes, legume products, snack bars, and nuts available in New Zealand.
    McKenzie-Parnell JM; Guthrie BE
    Biol Trace Elem Res; 1986 Aug; 10(2):107-21. PubMed ID: 24254357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate.
    Castro-Alba V; Lazarte CE; Perez-Rea D; Carlsson NG; Almgren A; Bergenståhl B; Granfeldt Y
    J Sci Food Agric; 2019 Aug; 99(11):5239-5248. PubMed ID: 31062366
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phytase and acid phosphatase activities in plant feedstuffs.
    Viveros A; Centeno C; Brenes A; Canales R; Lozano A
    J Agric Food Chem; 2000 Sep; 48(9):4009-13. PubMed ID: 10995305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of calcium level and phytase addition on ileal phytate degradation and amino acid digestibility of broilers fed corn-based diets.
    Amerah AM; Plumstead PW; Barnard LP; Kumar A
    Poult Sci; 2014 Apr; 93(4):906-15. PubMed ID: 24706968
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioavailability of iron, zinc, phytate and phytase activity during soaking and germination of white sorghum varieties.
    Afify Ael-M; El-Beltagi HS; El-Salam SM; Omran AA
    PLoS One; 2011; 6(10):e25512. PubMed ID: 22003395
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Progress in breeding low phytate crops.
    Raboy V
    J Nutr; 2002 Mar; 132(3):503S-505S. PubMed ID: 11880580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure of a cereal purple acid phytase provides new insights to phytate degradation in plants.
    Faba-Rodriguez R; Gu Y; Salmon M; Dionisio G; Brinch-Pedersen H; Brearley CA; Hemmings AM
    Plant Commun; 2022 Mar; 3(2):100305. PubMed ID: 35529950
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of Lactobacilli in Cereal-Legume Fermentation and as Potential Probiotics towards Phytate Hydrolysis.
    Amritha GK; Venkateswaran G
    Probiotics Antimicrob Proteins; 2018 Dec; 10(4):647-653. PubMed ID: 28936766
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidation of polyphenols in phytate-reduced high-tannin cereals: effect on different phenolic groups and on in vitro accessible iron.
    Matuschek E; Towo E; Svanberg U
    J Agric Food Chem; 2001 Nov; 49(11):5630-8. PubMed ID: 11714370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.