These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 36045291)

  • 1. A brainstem map for visceral sensations.
    Ran C; Boettcher JC; Kaye JA; Gallori CE; Liberles SD
    Nature; 2022 Sep; 609(7926):320-326. PubMed ID: 36045291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract.
    Beaumont E; Campbell RP; Andresen MC; Scofield S; Singh K; Libbus I; KenKnight BH; Snyder L; Cantrell N
    Am J Physiol Heart Circ Physiol; 2017 Aug; 313(2):H354-H367. PubMed ID: 28476920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peripheral versus central modulation of gastric vagal pathways by metabotropic glutamate receptor 5.
    Young RL; Page AJ; O'Donnell TA; Cooper NJ; Blackshaw LA
    Am J Physiol Gastrointest Liver Physiol; 2007 Feb; 292(2):G501-11. PubMed ID: 17053158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vagal afferent stimulation activates astrocytes in the nucleus of the solitary tract via AMPA receptors: evidence of an atypical neural-glial interaction in the brainstem.
    McDougal DH; Hermann GE; Rogers RC
    J Neurosci; 2011 Sep; 31(39):14037-45. PubMed ID: 21957265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convergence properties of solitary tract neurones driven synaptically by cardiac vagal afferents in the mouse.
    Paton JF
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):237-52. PubMed ID: 9490844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dedicated C-fibre viscerosensory pathways to central nucleus of the amygdala.
    McDougall SJ; Guo H; Andresen MC
    J Physiol; 2017 Feb; 595(3):901-917. PubMed ID: 27616729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABAergic effects on nucleus tractus solitarius neurons receiving gastric vagal inputs.
    Yuan CS; Liu D; Attele AS
    J Pharmacol Exp Ther; 1998 Aug; 286(2):736-41. PubMed ID: 9694928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Descending Modulation of Laryngeal Vagal Sensory Processing in the Brainstem Orchestrated by the Submedius Thalamic Nucleus.
    Mazzone SB; Bautista TG; Verberne AJM; Trewella MW; Farrell MJ; McGovern AE
    J Neurosci; 2020 Dec; 40(49):9426-9439. PubMed ID: 33115928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for multiple bulbar and higher brain circuits processing sensory inputs from the respiratory system in humans.
    Farrell MJ; Bautista TG; Liang E; Azzollini D; Egan GF; Mazzone SB
    J Physiol; 2020 Dec; 598(24):5771-5787. PubMed ID: 33029786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of neurokinin-1 receptors in the nucleus tractus solitarii of mice for the integration of cardiac vagal inputs.
    Paton JF
    Eur J Neurosci; 1998 Jul; 10(7):2261-75. PubMed ID: 9749755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship of efferent projections from the area postrema to vagal motor and brain stem catecholamine-containing cell groups: an axonal transport and immunohistochemical study in the rat.
    Cunningham ET; Miselis RR; Sawchenko PE
    Neuroscience; 1994 Feb; 58(3):635-48. PubMed ID: 7513390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extensive Inhibitory Gating of Viscerosensory Signals by a Sparse Network of Somatostatin Neurons.
    Thek KR; Ong SJM; Carter DC; Bassi JK; Allen AM; McDougall SJ
    J Neurosci; 2019 Oct; 39(41):8038-8050. PubMed ID: 31471471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-term receptor trafficking in the dorsal vagal complex: an overview.
    Browning KN; Travagli RA
    Auton Neurosci; 2006 Jun; 126-127():2-8. PubMed ID: 16580267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vagus nerve stimulation activates nucleus of solitary tract neurons via supramedullary pathways.
    Cooper CM; Farrand AQ; Andresen MC; Beaumont E
    J Physiol; 2021 Dec; 599(23):5261-5279. PubMed ID: 34676533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiovascular autonomic effects of transcutaneous auricular nerve stimulation via the tragus in the rat involve spinal cervical sensory afferent pathways.
    Mahadi KM; Lall VK; Deuchars SA; Deuchars J
    Brain Stimul; 2019; 12(5):1151-1158. PubMed ID: 31129152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro brainstem-gastric preparation with intact vagi for study of primary visceral afferent input to dorsal vagal complex in caudal medulla.
    Barber WD; Yuan CS; Burks TF; Feldman JL; Greer JJ
    J Auton Nerv Syst; 1995 Mar; 51(3):181-9. PubMed ID: 7769151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nicotine enhances inhibition of mouse vagal motor neurons by modulating excitability of premotor GABAergic neurons in the nucleus tractus solitarii.
    Xu H; Boychuk JA; Boychuk CR; Uteshev VV; Smith BN
    J Neurophysiol; 2015 Feb; 113(4):1165-74. PubMed ID: 25429117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leptin Sensitizes NTS Neurons to Vagal Input by Increasing Postsynaptic NMDA Receptor Currents.
    Neyens D; Zhao H; Huston NJ; Wayman GA; Ritter RC; Appleyard SM
    J Neurosci; 2020 Sep; 40(37):7054-7064. PubMed ID: 32817248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dedicated C-fiber vagal sensory afferent pathways to the paraventricular nucleus of the hypothalamus.
    Fawley JA; Hegarty DM; Aicher SA; Beaumont E; Andresen MC
    Brain Res; 2021 Oct; 1769():147625. PubMed ID: 34416255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vagally evoked synaptic currents in the immature rat nucleus tractus solitarii in an intact in vitro preparation.
    Smith BN; Dou P; Barber WD; Dudek FE
    J Physiol; 1998 Oct; 512 ( Pt 1)(Pt 1):149-62. PubMed ID: 9729625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.