BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36045549)

  • 1. Jerky-Inspired Fabrication of Anisotropic Hydrogels with Widely Tunable Mechanical Properties.
    He J; Khalesi H; Zhang Y; Zhao Y; Fang Y
    Langmuir; 2022 Sep; 38(36):10986-10993. PubMed ID: 36045549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A self-reinforcing strategy enables the intimate interface for anisotropic alginate composite hydrogels.
    Zhao X; Ding M; Xu C; Zhang X; Liu S; Lin X; Wang L; Xia Y
    Carbohydr Polym; 2021 Jan; 251():117054. PubMed ID: 33142606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A universal post-treatment strategy for biomimetic composite hydrogel with anisotropic topological structure and wide range of adjustable mechanical properties.
    Zhang X; Wang Y; Wu X; Zhu F; Qin YX; Chen W; Zheng Q
    Biomater Adv; 2022 Feb; 133():112654. PubMed ID: 35067432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freezing Molecular Orientation under Stretch for High Mechanical Strength but Anisotropic Hydrogels.
    Lin P; Zhang T; Wang X; Yu B; Zhou F
    Small; 2016 Aug; 12(32):4386-92. PubMed ID: 27376708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastretchable, Antifreezing, and High-Performance Strain Sensor Based on a Muscle-Inspired Anisotropic Conductive Hydrogel for Human Motion Monitoring and Wireless Transmission.
    Chen L; Chang X; Chen J; Zhu Y
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43833-43843. PubMed ID: 36112731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle-Inspired Highly Anisotropic, Strong, Ion-Conductive Hydrogels.
    Kong W; Wang C; Jia C; Kuang Y; Pastel G; Chen C; Chen G; He S; Huang H; Zhang J; Wang S; Hu L
    Adv Mater; 2018 Sep; 30(39):e1801934. PubMed ID: 30101467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic, strong, self-adhesive and strain-sensitive hydrogels enabled by magnetically-oriented cellulose/polydopamine nanocomposites.
    Yan G; He S; Chen G; Tang X; Sun Y; Xu F; Zeng X; Lin L
    Carbohydr Polym; 2022 Jan; 276():118783. PubMed ID: 34823795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the quality and processing efficiency of beef jerky via drying in confined conditions of pre-stretching.
    He J; Jia W; Lin Z; Zhang Y; Zhao Y; Fang Y
    Food Res Int; 2023 Oct; 172():113171. PubMed ID: 37689924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Super-Strong, Nonswellable, and Biocompatible Hydrogels Inspired by Human Tendons.
    Luo C; Huang M; Sun X; Wei N; Shi H; Li H; Lin M; Sun J
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):2638-2649. PubMed ID: 35045604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tough all-polysaccharide hydrogels with uniaxially/planarly oriented structure.
    Xue X; Song G; Chang C
    Carbohydr Polym; 2022 Jul; 288():119376. PubMed ID: 35450638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creating polymer hydrogel microfibres with internal alignment via electrical and mechanical stretching.
    Zhang S; Liu X; Barreto-Ortiz SF; Yu Y; Ginn BP; DeSantis NA; Hutton DL; Grayson WL; Cui FZ; Korgel BA; Gerecht S; Mao HQ
    Biomaterials; 2014 Mar; 35(10):3243-51. PubMed ID: 24439410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly antifouling, biocompatible and tough double network hydrogel based on carboxybetaine-type zwitterionic polymer and alginate.
    Zhang J; Chen L; Chen L; Qian S; Mou X; Feng J
    Carbohydr Polym; 2021 Apr; 257():117627. PubMed ID: 33541653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile and cost-effective synthesis of glycogen-based conductive hydrogels with extremely flexible, excellent self-healing and tunable mechanical properties.
    Hussain I; Sayed SM; Fu G
    Int J Biol Macromol; 2018 Oct; 118(Pt B):1463-1469. PubMed ID: 29964106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superstrong, superstiff, and conductive alginate hydrogels.
    Ji D; Park JM; Oh MS; Nguyen TL; Shin H; Kim JS; Kim D; Park HS; Kim J
    Nat Commun; 2022 May; 13(1):3019. PubMed ID: 35641519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient fabrication of anisotropic regenerated cellulose films from bamboo via a facile wet extrusion strategy.
    Lin X; Huang C; Wu P; Chai H; Cai C; Peng Y; Wang J; Li Y; Xu D; Li X
    Int J Biol Macromol; 2024 Apr; 265(Pt 1):130966. PubMed ID: 38508546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A High-Density Hydrogen Bond Locking Strategy for Constructing Anisotropic High-Strength Hydrogel-Based Meniscus Substitute.
    Zhang Q; Yang X; Wang K; Xu Z; Liu W
    Adv Sci (Weinh); 2024 Jun; 11(22):e2310035. PubMed ID: 38509852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The tensile properties of alginate hydrogels.
    Drury JL; Dennis RG; Mooney DJ
    Biomaterials; 2004 Jul; 25(16):3187-99. PubMed ID: 14980414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural-Wood-Inspired Ultrastrong Anisotropic Hybrid Hydrogels Targeting Artificial Tendons or Ligaments.
    Wu L; Kang Y; Shi X; Yuezhen B; Qu M; Li J; Wu ZS
    ACS Nano; 2023 Jul; 17(14):13522-13532. PubMed ID: 37439503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tendon-Inspired Anisotropic Hydrogels with Excellent Mechanical Properties for Strain Sensors.
    Lin H; Wang R; Xu S; Li X; Song S
    Langmuir; 2023 May; 39(17):6069-6077. PubMed ID: 37079920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties and chemical stability of alginate-based anisotropic capillary hydrogels.
    Nützl M; Schrottenbaum M; Müller T; Müller R
    J Mech Behav Biomed Mater; 2022 Oct; 134():105397. PubMed ID: 35932645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.