These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36045549)

  • 21. A Facile Approach for Anisotropic Hydrogel with Light-Regulated Stiffness and Its Application to Achieve Mechanical Toughening.
    Gao Y; Wang P; Zhao F; Liu X; Wu J; Hu J
    Macromol Rapid Commun; 2022 May; 43(10):e2200077. PubMed ID: 35298857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanofiber-reinforced bulk hydrogel: preparation and structural, mechanical, and biological properties.
    Huang Y; Li X; Lu Z; Zhang H; Huang J; Yan K; Wang D
    J Mater Chem B; 2020 Nov; 8(42):9794-9803. PubMed ID: 33030182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D-Printed Hydrogels with High-Strength and Anisotropy Mediated by Chain Rigidity.
    Kong D; Li Y; Yang B; Pang Y; Yuan H; Du C; Tan Y
    Small; 2024 Jul; ():e2403052. PubMed ID: 38970551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sea Cucumber-Inspired Autolytic Hydrogels Exhibiting Tunable High Mechanical Performances, Repairability, and Reusability.
    Gao F; Zhang Y; Li Y; Xu B; Cao Z; Liu W
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):8956-66. PubMed ID: 27014865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anisotropic bacterial cellulose hydrogels with tunable high mechanical performances, non-swelling and bionic nanofluidic ion transmission behavior.
    Zhang M; Chen S; Sheng N; Wang B; Wu Z; Liang Q; Wang H
    Nanoscale; 2021 May; 13(17):8126-8136. PubMed ID: 33881113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Facile Method to Fabricate Anisotropic Hydrogels with Perfectly Aligned Hierarchical Fibrous Structures.
    Mredha MTI; Guo YZ; Nonoyama T; Nakajima T; Kurokawa T; Gong JP
    Adv Mater; 2018 Mar; 30(9):. PubMed ID: 29341264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alginate/gelatin-based hybrid hydrogels with function of injecting and encapsulating cells in situ.
    Ren P; Wei D; Liang M; Xu L; Zhang T; Zhang Q
    Int J Biol Macromol; 2022 Jul; 212():67-84. PubMed ID: 35588977
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Green, tough, and heat-resistant: A GDL-induced strategy for starch-alginate hydrogels.
    Su CY; Li D; Sun W; Wang LJ; Wang Y
    Food Chem; 2024 Aug; 449():139188. PubMed ID: 38579652
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ligament-Inspired Tough and Anisotropic Fibrous Gel Belt with Programed Shape Deformations
    Wei P; Chen T; Chen G; Hou K; Zhu M
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):19291-19300. PubMed ID: 33852272
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Magnetically Driven Hierarchical Alignment in Biomimetic Fibrous Hydrogels.
    Chen W; Zhang Z; Kouwer PHJ
    Small; 2022 Jul; 18(27):e2203033. PubMed ID: 35665598
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Shapable Alginate Hydrogel Resolving the Conflicts between Multifunctionality and Fabrication Simplicity.
    Teng K; Xu L; Chen Y; Hu X; Zhao R; Zhang Y; An Q; Zhao Y
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):47014-47024. PubMed ID: 36194753
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A universal solvent-replacement strategy to convert alginate hydrogels into mechanically strong and transparent alginate eutectogels for sensitive strain sensors.
    Li T; Yao R; Ma Z; Tong R; Wang Y; Gu P; Xu J; Ye H; Liu L
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132789. PubMed ID: 38845258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anisotropic cellulose nanocrystal hydrogel with multi-stimuli response to temperature and mechanical stress.
    Liu L; Tanguy NR; Yan N; Wu Y; Liu X; Qing Y
    Carbohydr Polym; 2022 Mar; 280():119005. PubMed ID: 35027120
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly Stretchable and Tough Physical Silk Fibroin-Based Double Network Hydrogels.
    Zhao Y; Guan J; Wu SJ
    Macromol Rapid Commun; 2019 Dec; 40(23):e1900389. PubMed ID: 31692142
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro.
    Kuo CK; Ma PX
    J Biomed Mater Res A; 2008 Mar; 84(4):899-907. PubMed ID: 17647237
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanically enhanced nested-network hydrogels as a coating material for biomedical devices.
    Wang Z; Zhang H; Chu AJ; Jackson J; Lin K; Lim CJ; Lange D; Chiao M
    Acta Biomater; 2018 Apr; 70():98-109. PubMed ID: 29447960
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydroxypropyl cellulose enhanced ionic conductive double-network hydrogels.
    Gan S; Bai S; Chen C; Zou Y; Sun Y; Zhao J; Rong J
    Int J Biol Macromol; 2021 Jun; 181():418-425. PubMed ID: 33781814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combination of acid treatment and dual network fabrication to stretchable cellulose based hydrogels with tunable properties.
    Niu L; Zhang D; Liu Y; Zhou X; Wang J; Wang C; Chu F
    Int J Biol Macromol; 2020 Mar; 147():1-9. PubMed ID: 31917976
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators.
    Chin SM; Synatschke CV; Liu S; Nap RJ; Sather NA; Wang Q; Álvarez Z; Edelbrock AN; Fyrner T; Palmer LC; Szleifer I; Olvera de la Cruz M; Stupp SI
    Nat Commun; 2018 Jun; 9(1):2395. PubMed ID: 29921928
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of gelatin-based hydrogels with tunable mechanical properties and modulation on cell-matrix interactions.
    Jiang Y; Wang H; Wang X; Yu X; Li H; Tang K; Li Q
    J Biomater Appl; 2021 Nov; 36(5):902-911. PubMed ID: 34053306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.