These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

544 related articles for article (PubMed ID: 36045667)

  • 1. Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target.
    Chen J; Liu Q; He J; Li Y
    Front Immunol; 2022; 13():958790. PubMed ID: 36045667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferroptosis: an important player in the inflammatory response in diabetic nephropathy.
    Li J; Li L; Zhang Z; Chen P; Shu H; Yang C; Chu Y; Liu J
    Front Immunol; 2023; 14():1294317. PubMed ID: 38111578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding molecular upsets in diabetic nephropathy to identify novel targets and treatment opportunities.
    Raval N; Kumawat A; Kalyane D; Kalia K; Tekade RK
    Drug Discov Today; 2020 May; 25(5):862-878. PubMed ID: 31981791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of cellular crosstalk in the progression of diabetic nephropathy.
    Zhang K; Fu Z; Zhang Y; Chen X; Cai G; Hong Q
    Front Endocrinol (Lausanne); 2023; 14():1173933. PubMed ID: 37538798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Dendritic Cell in Diabetic Nephropathy.
    Kim H; Kim M; Lee HY; Park HY; Jhun H; Kim S
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting inflammation in diabetic nephropathy: a tale of hope.
    Moreno JA; Gomez-Guerrero C; Mas S; Sanz AB; Lorenzo O; Ruiz-Ortega M; Opazo L; Mezzano S; Egido J
    Expert Opin Investig Drugs; 2018 Nov; 27(11):917-930. PubMed ID: 30334635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Interplay of Renin-Angiotensin System and Toll-Like Receptor 4 in the Inflammation of Diabetic Nephropathy.
    Feng Q; Liu D; Lu Y; Liu Z
    J Immunol Res; 2020; 2020():6193407. PubMed ID: 32411800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of Chemokines and Chemokine Receptors in Diabetic Nephropathy.
    Chang TT; Chen JW
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32365893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complement Deposition Predicts Worsening Kidney Function and Underlines the Clinical Significance of the 2010 Renal Pathology Society Classification of Diabetic Nephropathy.
    Jiang S; Di D; Jiao Y; Zou G; Gao H; Li W
    Front Immunol; 2022; 13():868127. PubMed ID: 35711407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aberrant cytokines/chemokines production correlate with proteinuria in patients with overt diabetic nephropathy.
    Wu CC; Chen JS; Lu KC; Chen CC; Lin SH; Chu P; Sytwu HK; Lin YF
    Clin Chim Acta; 2010 May; 411(9-10):700-4. PubMed ID: 20138168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive advancements in the prevention and treatment of diabetic nephropathy: A narrative review.
    Elendu C; John Okah M; Fiemotongha KDJ; Adeyemo BI; Bassey BN; Omeludike EK; Obidigbo B
    Medicine (Baltimore); 2023 Oct; 102(40):e35397. PubMed ID: 37800812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SIRT1: Mechanism and Protective Effect in Diabetic Nephropathy.
    Ji J; Tao P; Wang Q; Li L; Xu Y
    Endocr Metab Immune Disord Drug Targets; 2021; 21(5):835-842. PubMed ID: 33121427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy.
    Qiu YY; Tang LQ
    Pharmacol Res; 2016 Dec; 114():251-264. PubMed ID: 27826011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical and Pathological Characteristics of Patients With Nonproteinuric Diabetic Nephropathy.
    Chang DY; Li MR; Yu XJ; Wang SX; Chen M; Zhao MH
    Front Endocrinol (Lausanne); 2021; 12():761386. PubMed ID: 34764941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-genetic mechanisms of diabetic nephropathy.
    Han Q; Zhu H; Chen X; Liu Z
    Front Med; 2017 Sep; 11(3):319-332. PubMed ID: 28871454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment.
    Samsu N
    Biomed Res Int; 2021; 2021():1497449. PubMed ID: 34307650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards Better Drug Repositioning: Targeted Immunoinflammatory Therapy for Diabetic Nephropathy.
    Zhang Q; Yang M; Xiao Y; Han Y; Yang S; Sun L
    Curr Med Chem; 2021; 28(5):1003-1024. PubMed ID: 31701843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crosstalk between the liver and kidney in diabetic nephropathy.
    Yang M; Luo S; Yang J; Chen W; He L; Liu D; Zhao L; Wang X
    Eur J Pharmacol; 2022 Sep; 931():175219. PubMed ID: 35987257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Inhibitory Effect of Rapamycin on Toll Like Receptor 4 and Interleukin 17 in the Early Stage of Rat Diabetic Nephropathy.
    Yu R; Bo H; Villani V; Spencer PJ; Fu P
    Kidney Blood Press Res; 2016; 41(1):55-69. PubMed ID: 26849067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Huangkui capsule, an extract from Abelmoschus manihot (L.) medic, improves diabetic nephropathy via activating peroxisome proliferator-activated receptor (PPAR)-α/γ and attenuating endoplasmic reticulum stress in rats.
    Ge J; Miao JJ; Sun XY; Yu JY
    J Ethnopharmacol; 2016 Aug; 189():238-49. PubMed ID: 27224243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.