BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 36045670)

  • 1. Underlying mechanisms of evasion from NK cells as rationale for improvement of NK cell-based immunotherapies.
    Seliger B; Koehl U
    Front Immunol; 2022; 13():910595. PubMed ID: 36045670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of NK cell dysfunction in the tumor microenvironment and current clinical approaches to harness NK cell potential for immunotherapy.
    Devillier R; Chrétien AS; Pagliardini T; Salem N; Blaise D; Olive D
    J Leukoc Biol; 2021 Jun; 109(6):1071-1088. PubMed ID: 32991746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NK Cell Adoptive Immunotherapy of Cancer: Evaluating Recognition Strategies and Overcoming Limitations.
    Sanchez CE; Dowlati EP; Geiger AE; Chaudhry K; Tovar MA; Bollard CM; Cruz CRY
    Transplant Cell Ther; 2021 Jan; 27(1):21-35. PubMed ID: 33007496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unleashing Natural Killer Cells in the Tumor Microenvironment-The Next Generation of Immunotherapy?
    Ben-Shmuel A; Biber G; Barda-Saad M
    Front Immunol; 2020; 11():275. PubMed ID: 32153582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Naturally Killing the Silent Killer: NK Cell-Based Immunotherapy for Ovarian Cancer.
    Nersesian S; Glazebrook H; Toulany J; Grantham SR; Boudreau JE
    Front Immunol; 2019; 10():1782. PubMed ID: 31456796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural killer cells in cancer biology and therapy.
    Wu SY; Fu T; Jiang YZ; Shao ZM
    Mol Cancer; 2020 Aug; 19(1):120. PubMed ID: 32762681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Next Generation Natural Killer Cells for Cancer Immunotherapy.
    Rossi F; Fredericks N; Snowden A; Allegrezza MJ; Moreno-Nieves UY
    Front Immunol; 2022; 13():886429. PubMed ID: 35720306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NK cells direct the perspective approaches to cancer immunotherapy.
    Jalil AT; Abdulhadi MA; Al-Marzook FA; Hizam MM; Abdulameer SJ; Al-Azzawi AKJ; Zabibah RS; Fadhil AA
    Med Oncol; 2023 Jun; 40(7):206. PubMed ID: 37318610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NK cell exhaustion in the tumor microenvironment.
    Jia H; Yang H; Xiong H; Luo KQ
    Front Immunol; 2023; 14():1303605. PubMed ID: 38022646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viral and Nonviral Engineering of Natural Killer Cells as Emerging Adoptive Cancer Immunotherapies.
    Matosevic S
    J Immunol Res; 2018; 2018():4054815. PubMed ID: 30306093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory Receptors and Checkpoints in Human NK Cells, Implications for the Immunotherapy of Cancer.
    Sivori S; Della Chiesa M; Carlomagno S; Quatrini L; Munari E; Vacca P; Tumino N; Mariotti FR; Mingari MC; Pende D; Moretta L
    Front Immunol; 2020; 11():2156. PubMed ID: 33013909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current progress in cancer immunotherapy based on natural killer cells.
    Bagheri Y; Barati A; Aghebati-Maleki A; Aghebati-Maleki L; Yousefi M
    Cell Biol Int; 2021 Jan; 45(1):2-17. PubMed ID: 32910474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting Natural Killer Cells for Tumor Immunotherapy.
    Zhang C; Hu Y; Shi C
    Front Immunol; 2020; 11():60. PubMed ID: 32140153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of intrinsic inhibitory checkpoints using nano-carriers to unleash NK cell activity.
    Biber G; Sabag B; Raiff A; Ben-Shmuel A; Puthenveetil A; Benichou JIC; Jubany T; Levy M; Killner S; Barda-Saad M
    EMBO Mol Med; 2022 Jan; 14(1):e14073. PubMed ID: 34725941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immune evasion and therapeutic opportunities based on natural killer cells.
    Zhang J; Guo F; Li L; Zhang S; Wang Y
    Chin J Cancer Res; 2023 Jun; 35(3):283-298. PubMed ID: 37440830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Landscape of natural killer cell activity in head and neck squamous cell carcinoma.
    Charap AJ; Enokida T; Brody R; Sfakianos J; Miles B; Bhardwaj N; Horowitz A
    J Immunother Cancer; 2020 Dec; 8(2):. PubMed ID: 33428584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer-Induced Alterations of NK-Mediated Target Recognition: Current and Investigational Pharmacological Strategies Aiming at Restoring NK-Mediated Anti-Tumor Activity.
    Chretien AS; Le Roy A; Vey N; Prebet T; Blaise D; Fauriat C; Olive D
    Front Immunol; 2014; 5():122. PubMed ID: 24715892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viral escape from NK-cell-mediated immunosurveillance: A lesson for cancer immunotherapy?
    Momayyezi P; Bilev E; Ljunggren HG; Hammer Q
    Eur J Immunol; 2023 Nov; 53(11):e2350465. PubMed ID: 37526136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human NK cells: From surface receptors to clinical applications.
    Moretta L; Pietra G; Vacca P; Pende D; Moretta F; Bertaina A; Mingari MC; Locatelli F; Moretta A
    Immunol Lett; 2016 Oct; 178():15-9. PubMed ID: 27185471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytokines Orchestrating the Natural Killer-Myeloid Cell Crosstalk in the Tumor Microenvironment: Implications for Natural Killer Cell-Based Cancer Immunotherapy.
    Gaggero S; Witt K; Carlsten M; Mitra S
    Front Immunol; 2020; 11():621225. PubMed ID: 33584718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.