These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 3604635)

  • 1. Calcar unloading after hip replacement. A cadaver study of femoral stem designs.
    Djerf K; Gillquist J
    Acta Orthop Scand; 1987 Apr; 58(2):97-103. PubMed ID: 3604635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of prosthetic stem stiffness and of a calcar collar on stresses in the proximal end of the femur with a cemented femoral component.
    Lewis JL; Askew MJ; Wixson RL; Kramer GM; Tarr RR
    J Bone Joint Surg Am; 1984 Feb; 66(2):280-6. PubMed ID: 6693456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proximal strain distribution in the loaded femur. An in vitro comparison of the distributions in the intact femur and after insertion of different hip-replacement femoral components.
    Oh I; Harris WH
    J Bone Joint Surg Am; 1978 Jan; 60(1):75-85. PubMed ID: 624762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of femoral neck length, stem size, and body weight on strains in the proximal cement mantle.
    Harrington MA; O'Connor DO; Lozynsky AJ; Kovach I; Harris WH
    J Bone Joint Surg Am; 2002 Apr; 84(4):573-9. PubMed ID: 11940617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of calcar contact on femoral component micromovement. A mechanical study.
    Markolf KL; Amstutz HC; Hirschowitz DL
    J Bone Joint Surg Am; 1980 Dec; 62(8):1315-23. PubMed ID: 7440610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femoral antetorsion after calcar-guided short-stem total hip arthroplasty: A cadaver study.
    Hochreiter J; Böhm G; Fierlbeck J; Anderl C; Birke M; Münger P; Ortmaier R
    J Orthop Res; 2022 Sep; 40(9):2127-2132. PubMed ID: 34873734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of femoral stem geometry on interface motion in uncemented porous-coated total hip prostheses. Comparison of straight-stem and curved-stem designs.
    Callaghan JJ; Fulghum CS; Glisson RR; Stranne SK
    J Bone Joint Surg Am; 1992 Jul; 74(6):839-48. PubMed ID: 1634574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The influence of the elasticity module of the femoral shaft and neck of a total hip prosthesis on the distribution of stress in the femur ].
    Meunier A; Christel P; Sedel L; Witvoet J; Blanquaert D
    Int Orthop; 1990; 14(1):67-73. PubMed ID: 2341217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of coronally slotted femoral prostheses on cortical bone strain.
    Musgrave DS; Glisson RR; Graham RD; Guilak F; Vail TP
    J Arthroplasty; 1997 Sep; 12(6):657-69. PubMed ID: 9306217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain distribution in the proximal femur with flexible composite and metallic femoral components under axial and torsional loads.
    Otani T; Whiteside LA; White SE
    J Biomed Mater Res; 1993 May; 27(5):575-85. PubMed ID: 8314810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of press-fit femoral stems on strains in the femur. A photoelastic coating study.
    Zhou XM; Walker PS; Robertson DD
    J Arthroplasty; 1990 Mar; 5(1):71-82. PubMed ID: 2319252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of femoral component head size on posterior dislocation of the artificial hip joint.
    Bartz RL; Nobel PC; Kadakia NR; Tullos HS
    J Bone Joint Surg Am; 2000 Sep; 82(9):1300-7. PubMed ID: 11005521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element modeling of resurfacing hip prosthesis: estimation of accuracy through experimental validation.
    Taddei F; Martelli S; Gill HS; Cristofolini L; Viceconti M
    J Biomech Eng; 2010 Feb; 132(2):021002. PubMed ID: 20370239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel locking screw hip stem to achieve immediate stability in total hip arthroplasty: A biomechanical study.
    Grechenig S; Gueorguiev B; Berner A; Heiss P; Müller M; Nerlich M; Schmitz P
    Injury; 2015 Oct; 46 Suppl 4():S83-7. PubMed ID: 26542871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the calcar femorale in stress distribution in the proximal femur.
    Zhang Q; Chen W; Liu HJ; Li ZY; Song ZH; Pan JS; Zhang YZ
    Orthop Surg; 2009 Nov; 1(4):311-6. PubMed ID: 22009881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoelastic and thermoelastic measurement of stress on the proximal femur before and after implantation of a hip prosthesis with retention of the femoral neck.
    Refior JJ; Schidlo C; Plitz W; Heining S
    Orthopedics; 2002 May; 25(5):505-11. PubMed ID: 12046909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deformation pattern and load transfer of an uncemented femoral stem with modular necks. An experimental study in human cadaver femurs.
    Enoksen CH; Gjerdet NR; Klaksvik J; Arthursson AJ; Schnell-Husby O; Wik TS
    Clin Biomech (Bristol, Avon); 2016 Feb; 32():28-33. PubMed ID: 26785385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circumferential and axial strain in the proximal femur: effect of prosthesis type and position.
    McBeath AA; Schopler SA; Narechania RG
    Clin Orthop Relat Res; 1980; (150):301-5. PubMed ID: 7428236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical evaluation of bone remodelling and adaptation considering different hip prosthesis designs.
    Levadnyi I; Awrejcewicz J; Gubaua JE; Pereira JT
    Clin Biomech (Bristol, Avon); 2017 Dec; 50():122-129. PubMed ID: 29100185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress analysis of the proximo-medial femur after total hip replacement.
    Prendergast PJ; Taylor D
    J Biomed Eng; 1990 Sep; 12(5):379-82. PubMed ID: 2214724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.