These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 36046583)

  • 1. Epigenetics and its role in effecting agronomical traits.
    Gupta C; Salgotra RK
    Front Plant Sci; 2022; 13():925688. PubMed ID: 36046583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetic variation in maize agronomical traits for breeding and trait improvement.
    Zhang D; Gan Y; Le L; Pu L
    J Genet Genomics; 2024 Feb; ():. PubMed ID: 38310944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetics for Crop Improvement in Times of Global Change.
    Kakoulidou I; Avramidou EV; Baránek M; Brunel-Muguet S; Farrona S; Johannes F; Kaiserli E; Lieberman-Lazarovich M; Martinelli F; Mladenov V; Testillano PS; Vassileva V; Maury S
    Biology (Basel); 2021 Aug; 10(8):. PubMed ID: 34439998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Will epigenetics be a key player in crop breeding?
    Tonosaki K; Fujimoto R; Dennis ES; Raboy V; Osabe K
    Front Plant Sci; 2022; 13():958350. PubMed ID: 36247549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of epigenetic modifications in the development of crops essential traits.
    Wang YN; Xu T; Wang WP; Zhang QZ; Xie LN
    Yi Chuan; 2021 Sep; 43(9):858-879. PubMed ID: 34702699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural and induced epigenetic variation for crop improvement.
    Lieberman-Lazarovich M; Kaiserli E; Bucher E; Mladenov V
    Curr Opin Plant Biol; 2022 Dec; 70():102297. PubMed ID: 36108411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetics and epigenomics: underlying mechanisms, relevance, and implications in crop improvement.
    Agarwal G; Kudapa H; Ramalingam A; Choudhary D; Sinha P; Garg V; Singh VK; Patil GB; Pandey MK; Nguyen HT; Guo B; Sunkar R; Niederhuth CE; Varshney RK
    Funct Integr Genomics; 2020 Nov; 20(6):739-761. PubMed ID: 33089419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant epigenomics for extenuation of abiotic stresses: challenges and future perspectives.
    Singh D; Chaudhary P; Taunk J; Kumar Singh C; Sharma S; Singh VJ; Singh D; Chinnusamy V; Yadav R; Pal M
    J Exp Bot; 2021 Oct; 72(20):6836-6855. PubMed ID: 34302734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic approaches to crop breeding: current status and perspectives.
    Dalakouras A; Vlachostergios D
    J Exp Bot; 2021 Jul; 72(15):5356-5371. PubMed ID: 34017985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Epigenetics: A New Avenue for Crop Improvement.
    Gahlaut V; Zinta G; Jaiswal V; Kumar S
    Epigenomes; 2020 Nov; 4(4):. PubMed ID: 34968304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harnessing epigenetic variability for crop improvement: current status and future prospects.
    Kim EY; Kim KD; Cho J
    Genes Genomics; 2022 Mar; 44(3):259-266. PubMed ID: 34807374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic Regulation in Heterosis and Environmental Stress: The Challenge of Producing Hybrid Epigenomes to Face Climate Change.
    Duarte-Aké F; Us-Camas R; De-la-Peña C
    Epigenomes; 2023 Jul; 7(3):. PubMed ID: 37489402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenome guided crop improvement: current progress and future opportunities.
    Zhang Y; Andrews H; Eglitis-Sexton J; Godwin I; Tanurdžić M; Crisp PA
    Emerg Top Life Sci; 2022 Apr; 6(2):141-151. PubMed ID: 35072210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetics for Plant Improvement: Current Knowledge and Modeling Avenues.
    Gallusci P; Dai Z; Génard M; Gauffretau A; Leblanc-Fournier N; Richard-Molard C; Vile D; Brunel-Muguet S
    Trends Plant Sci; 2017 Jul; 22(7):610-623. PubMed ID: 28587758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic Changes and Transcriptional Reprogramming Upon Woody Plant Grafting for Crop Sustainability in a Changing Environment.
    Kapazoglou A; Tani E; Avramidou EV; Abraham EM; Gerakari M; Megariti S; Doupis G; Doulis AG
    Front Plant Sci; 2020; 11():613004. PubMed ID: 33510757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenome editing: targeted manipulation of epigenetic modifications in plants.
    Shin H; Choi WL; Lim JY; Huh JH
    Genes Genomics; 2022 Mar; 44(3):307-315. PubMed ID: 35000141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retrospective and perspective of plant epigenetics in China.
    Duan CG; Zhu JK; Cao X
    J Genet Genomics; 2018 Nov; 45(11):621-638. PubMed ID: 30455036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetics: possible applications in climate-smart crop breeding.
    Varotto S; Tani E; Abraham E; Krugman T; Kapazoglou A; Melzer R; Radanović A; Miladinović D
    J Exp Bot; 2020 Aug; 71(17):5223-5236. PubMed ID: 32279074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.