These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 36046583)

  • 41. Global agricultural intensification during climate change: a role for genomics.
    Abberton M; Batley J; Bentley A; Bryant J; Cai H; Cockram J; de Oliveira AC; Cseke LJ; Dempewolf H; De Pace C; Edwards D; Gepts P; Greenland A; Hall AE; Henry R; Hori K; Howe GT; Hughes S; Humphreys M; Lightfoot D; Marshall A; Mayes S; Nguyen HT; Ogbonnaya FC; Ortiz R; Paterson AH; Tuberosa R; Valliyodan B; Varshney RK; Yano M
    Plant Biotechnol J; 2016 Apr; 14(4):1095-8. PubMed ID: 26360509
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Omics-Facilitated Crop Improvement for Climate Resilience and Superior Nutritive Value.
    Zenda T; Liu S; Dong A; Li J; Wang Y; Liu X; Wang N; Duan H
    Front Plant Sci; 2021; 12():774994. PubMed ID: 34925418
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Epigenetic variation for agronomic improvement: an opportunity for vegetatively propagated crops.
    Latutrie M; Gourcilleau D; Pujol B
    Am J Bot; 2019 Oct; 106(10):1281-1284. PubMed ID: 31505022
    [No Abstract]   [Full Text] [Related]  

  • 45. Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis.
    Chen D; Neumann K; Friedel S; Kilian B; Chen M; Altmann T; Klukas C
    Plant Cell; 2014 Dec; 26(12):4636-55. PubMed ID: 25501589
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Next-generation sequencing applications for wheat crop improvement.
    Berkman PJ; Lai K; Lorenc MT; Edwards D
    Am J Bot; 2012 Feb; 99(2):365-71. PubMed ID: 22268223
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Exploring epitranscriptomics for crop improvement and environmental stress tolerance.
    Yang X; Patil S; Joshi S; Jamla M; Kumar V
    Plant Physiol Biochem; 2022 Jul; 183():56-71. PubMed ID: 35567875
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of Epigenetics in Modulating Phenotypic Plasticity against Abiotic Stresses in Plants.
    Dar FA; Mushtaq NU; Saleem S; Rehman RU; Dar TUH; Hakeem KR
    Int J Genomics; 2022; 2022():1092894. PubMed ID: 35747076
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative trait loci from identification to exploitation for crop improvement.
    Kumar J; Gupta DS; Gupta S; Dubey S; Gupta P; Kumar S
    Plant Cell Rep; 2017 Aug; 36(8):1187-1213. PubMed ID: 28352970
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Epigenetics' implication in autism spectrum disorders: A review].
    Hamza M; Halayem S; Mrad R; Bourgou S; Charfi F; Belhadj A
    Encephale; 2017 Aug; 43(4):374-381. PubMed ID: 27692350
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Contribution of epigenetic variation to adaptation in Arabidopsis.
    Schmid MW; Heichinger C; Coman Schmid D; Guthörl D; Gagliardini V; Bruggmann R; Aluri S; Aquino C; Schmid B; Turnbull LA; Grossniklaus U
    Nat Commun; 2018 Oct; 9(1):4446. PubMed ID: 30361538
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Perspectives for epigenetic editing in crops.
    Selma S; Orzáez D
    Transgenic Res; 2021 Aug; 30(4):381-400. PubMed ID: 33891288
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The epigenetic footprint of poleward range-expanding plants in apomictic dandelions.
    Preite V; Snoek LB; Oplaat C; Biere A; van der Putten WH; Verhoeven KJ
    Mol Ecol; 2015 Sep; 24(17):4406-18. PubMed ID: 26206253
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantitative trait variation is revealed in a novel hypomethylated population of woodland strawberry (Fragaria vesca).
    Xu J; Tanino KK; Horner KN; Robinson SJ
    BMC Plant Biol; 2016 Nov; 16(1):240. PubMed ID: 27809774
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genomic Selection: A Tool for Accelerating the Efficiency of Molecular Breeding for Development of Climate-Resilient Crops.
    Budhlakoti N; Kushwaha AK; Rai A; Chaturvedi KK; Kumar A; Pradhan AK; Kumar U; Kumar RR; Juliana P; Mishra DC; Kumar S
    Front Genet; 2022; 13():832153. PubMed ID: 35222548
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sequencing Crop Genomes: A Gateway to Improve Tropical Agriculture.
    Thottathil GP; Jayasekaran K; Othman AS
    Trop Life Sci Res; 2016 Feb; 27(1):93-114. PubMed ID: 27019684
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plant proteomic research for improvement of food crops under stresses: a review.
    Mustafa G; Komatsu S
    Mol Omics; 2021 Dec; 17(6):860-880. PubMed ID: 34870299
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Physiological and agronomical evaluation of elite rice varieties for adaptation to heat stress.
    Ezin V; Ahanchede WW; Ayenan MAT; Ahanchede A
    BMC Plant Biol; 2022 May; 22(1):236. PubMed ID: 35534823
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pangenomics and Crop Genome Adaptation in a Changing Climate.
    Petereit J; Bayer PE; Thomas WJW; Tay Fernandez CG; Amas J; Zhang Y; Batley J; Edwards D
    Plants (Basel); 2022 Jul; 11(15):. PubMed ID: 35956427
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Epigenetic marks: regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs.
    Ibeagha-Awemu EM; Zhao X
    Front Genet; 2015; 6():302. PubMed ID: 26442116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.