These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36046589)

  • 21. A New Optical Remote Sensing Technique for High-Resolution Mapping of Soil Moisture.
    Babaeian E; Sidike P; Newcomb MS; Maimaitijiang M; White SA; Demieville J; Ward RW; Sadeghi M; LeBauer DS; Jones SB; Sagan V; Tuller M
    Front Big Data; 2019; 2():37. PubMed ID: 33693360
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robust Soil Water Potential Sensor to Optimize Irrigation in Agriculture.
    Menne D; Hübner C; Trebbels D; Willenbacher N
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746247
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of a new heat dissipation matric potential sensor.
    Matile L; Berger R; Wächter D; Krebs R
    Sensors (Basel); 2013 Jan; 13(1):1137-45. PubMed ID: 23344384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimating Volumetric Water Content in Soil for IoUT Contexts by Exploiting RSSI-Based Augmented Sensors via Machine Learning.
    Bertocco M; Parrino S; Peruzzi G; Pozzebon A
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting Grape Sugar Content under Quality Attributes Using Normalized Difference Vegetation Index Data and Automated Machine Learning.
    Kasimati A; Espejo-García B; Darra N; Fountas S
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590939
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatio-temporal monitoring of cotton cultivation using ground-based and airborne multispectral sensors in GIS environment.
    Papadopoulos A; Kalivas D; Theocharopoulos S
    Environ Monit Assess; 2017 Jul; 189(7):323. PubMed ID: 28593563
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Model development for prediction of soil water dynamics in plant production.
    Hu Z; Jin H; Zhang K
    Pak J Pharm Sci; 2015 Sep; 28(5 Suppl):1891-6. PubMed ID: 26525032
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Agricultural Irrigation Recommendation and Alert (AIRA) system using optimization and machine learning in Hadoop for sustainable agriculture.
    Veerachamy R; Ramar R
    Environ Sci Pollut Res Int; 2022 Mar; 29(14):19955-19974. PubMed ID: 33788091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Maize Crop Coefficient Estimated from UAV-Measured Multispectral Vegetation Indices.
    Zhang Y; Han W; Niu X; Li G
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795309
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tensiometer-Based Irrigation Management of Subirrigated Soilless Tomato: Effects of Substrate Matric Potential Control on Crop Performance.
    Montesano FF; Serio F; Mininni C; Signore A; Parente A; Santamaria P
    Front Plant Sci; 2015; 6():1150. PubMed ID: 26779189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Wireless Sensor Network Deployment for Soil Moisture Monitoring in Precision Agriculture.
    Lloret J; Sendra S; Garcia L; Jimenez JM
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770549
    [TBL] [Abstract][Full Text] [Related]  

  • 32. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture.
    Mazzia V; Comba L; Khaliq A; Chiaberge M; Gay P
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365636
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Yield-loss Models for Tobacco Infected with Meloidogyne incognita as Affected by Soil Moisture.
    Wheeler TA; Barker KR; Schneider SM
    J Nematol; 1991 Oct; 23(4):365-71. PubMed ID: 19283140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Data Assimilation of High-Resolution Thermal and Radar Remote Sensing Retrievals for Soil Moisture Monitoring in a Drip-Irrigated Vineyard.
    Lei F; Crow WT; Kustas WP; Dong J; Yang Y; Knipper KR; Anderson MC; Gao F; Notarnicola C; Greifeneder F; McKee LM; Alfieri JG; Hain C; Dokoozlian N
    Remote Sens Environ; 2020 Mar; 239():. PubMed ID: 32095027
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time Domain Transmissiometry-Based Sensor for Simultaneously Measuring Soil Water Content, Electrical Conductivity, Temperature, and Matric Potential.
    Kojima Y; Matsuoka M; Ariki T; Yoshioka T
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850934
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monitoring Citrus Soil Moisture and Nutrients Using an IoT Based System.
    Zhang X; Zhang J; Li L; Zhang Y; Yang G
    Sensors (Basel); 2017 Feb; 17(3):. PubMed ID: 28241488
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and Performance Evaluation of a Low-Cost Autonomous Sensor Interface for a Smart IoT-Based Irrigation Monitoring and Control System.
    Abba S; Wadumi Namkusong J; Lee JA; Liz Crespo M
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31438597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sensor feedback system enables automated deficit irrigation scheduling for cotton.
    O'Shaughnessy SA; Colaizzi PD; Bednarz CW
    Front Plant Sci; 2023; 14():1149424. PubMed ID: 36968387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. IoT-Based Systems for Soil Nutrients Assessment in Horticulture.
    Postolache S; Sebastião P; Viegas V; Postolache O; Cercas F
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36617000
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Downscaling satellite soil moisture using geomorphometry and machine learning.
    Guevara M; Vargas R
    PLoS One; 2019; 14(9):e0219639. PubMed ID: 31550248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.