These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36047147)

  • 61. Microfluidic-based vascularized microphysiological systems.
    Lee S; Ko J; Park D; Lee SR; Chung M; Lee Y; Jeon NL
    Lab Chip; 2018 Sep; 18(18):2686-2709. PubMed ID: 30110034
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Tissue Chips and Microphysiological Systems for Disease Modeling and Drug Testing.
    Donoghue L; Nguyen KT; Graham C; Sethu P
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33525451
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The Contrasting Perceptions and the Cause Regarding Patenting Technologies Between Academic Medical Researchers and Pharmaceutical Companies Based in Japan.
    Sugimitsu K; Manome Y
    J Multidiscip Healthc; 2021; 14():1795-1805. PubMed ID: 34285498
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Kinetic analysis of sequential metabolism of triazolam and its extrapolation to humans using an entero-hepatic two-organ microphysiological system.
    Arakawa H; Sugiura S; Kawanishi T; Shin K; Toyoda H; Satoh T; Sakai Y; Kanamori T; Kato Y
    Lab Chip; 2020 Feb; 20(3):537-547. PubMed ID: 31930237
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Organ/body-on-a-chip based on microfluidic technology for drug discovery.
    Kimura H; Sakai Y; Fujii T
    Drug Metab Pharmacokinet; 2018 Feb; 33(1):43-48. PubMed ID: 29175062
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Programming microphysiological systems for children's health protection.
    Knudsen TB; Klieforth B; Slikker W
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1586-1592. PubMed ID: 28658972
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Establishment of a resazurin-based aortic valve tissue viability assay for dynamic culture in a microphysiological system.
    Dittfeld C; Winkelkotte M; Behrens S; Schmieder F; Jannasch A; Matschke K; Sonntag F; Tugtekin SM
    Clin Hemorheol Microcirc; 2021; 79(1):167-178. PubMed ID: 34487029
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Academic User View: Organ-on-a-Chip Technology.
    Busek M; Aizenshtadt A; Amirola-Martinez M; Delon L; Krauss S
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200386
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Monitoring of Microphysiological Systems: Integrating Sensors and Real-Time Data Analysis toward Autonomous Decision-Making.
    Young AT; Rivera KR; Erb PD; Daniele MA
    ACS Sens; 2019 Jun; 4(6):1454-1464. PubMed ID: 30964652
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Japan as the front-runner of super-aged societies: Perspectives from medicine and medical care in Japan.
    Arai H; Ouchi Y; Toba K; Endo T; Shimokado K; Tsubota K; Matsuo S; Mori H; Yumura W; Yokode M; Rakugi H; Ohshima S
    Geriatr Gerontol Int; 2015 Jun; 15(6):673-87. PubMed ID: 25656311
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Quantitative Systems Pharmacology Approaches Applied to Microphysiological Systems (MPS): Data Interpretation and Multi-MPS Integration.
    Yu J; Cilfone NA; Large EM; Sarkar U; Wishnok JS; Tannenbaum SR; Hughes DJ; Lauffenburger DA; Griffith LG; Stokes CL; Cirit M
    CPT Pharmacometrics Syst Pharmacol; 2015 Oct; 4(10):585-94. PubMed ID: 26535159
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Engineering cell aggregates through incorporated polymeric microparticles.
    Ahrens CC; Dong Z; Li W
    Acta Biomater; 2017 Oct; 62():64-81. PubMed ID: 28782721
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Liver microphysiological platforms for drug metabolism applications.
    Kulsharova G; Kurmangaliyeva A
    Cell Prolif; 2021 Sep; 54(9):e13099. PubMed ID: 34291515
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Laronidase.
    BioDrugs; 2002; 16(4):316-8. PubMed ID: 12196045
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Tissue engineering-based approaches to enhance physiological relevancy of cell-based assays].
    Sakai Y; Shinohara M
    Nihon Yakurigaku Zasshi; 2018; 151(2):56-61. PubMed ID: 29415926
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Japan-Specific Key Regulatory Aspects for Development of New Biopharmaceutical Drug Products.
    Desai KG; Obayashi H; Colandene JD; Nesta DP
    J Pharm Sci; 2018 Jul; 107(7):1773-1786. PubMed ID: 29601839
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Navigating tissue chips from development to dissemination: A pharmaceutical industry perspective.
    Ewart L; Fabre K; Chakilam A; Dragan Y; Duignan DB; Eswaraka J; Gan J; Guzzie-Peck P; Otieno M; Jeong CG; Keller DA; de Morais SM; Phillips JA; Proctor W; Sura R; Van Vleet T; Watson D; Will Y; Tagle D; Berridge B
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1579-1585. PubMed ID: 28622731
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Organ-on-a-chip technology for the study of the female reproductive system.
    Young RE; Huh DD
    Adv Drug Deliv Rev; 2021 Jun; 173():461-478. PubMed ID: 33831478
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Guidelines, editors, pharma and the biological paradigm shift.
    Singh AR; Singh SA
    Mens Sana Monogr; 2007 Jan; 5(1):27-30. PubMed ID: 22058616
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Organ-on-a-chip technologies that can transform ophthalmic drug discovery and disease modeling.
    Haderspeck JC; Chuchuy J; Kustermann S; Liebau S; Loskill P
    Expert Opin Drug Discov; 2019 Jan; 14(1):47-57. PubMed ID: 30526132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.