These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 36047234)
1. The Effect of Cellulose Nanofibers on the Manufacturing of Mini-Tablets by Direct Powder Compression. Nakamura S; Nakura M; Sakamoto T Chem Pharm Bull (Tokyo); 2022; 70(9):628-636. PubMed ID: 36047234 [TBL] [Abstract][Full Text] [Related]
2. Orally Disintegrating Tablet Manufacture via Direct Powder Compression Using Cellulose Nanofiber as a Functional Additive. Nakamura S; Fukai T; Sakamoto T AAPS PharmSciTech; 2021 Dec; 23(1):37. PubMed ID: 34950985 [TBL] [Abstract][Full Text] [Related]
3. Effect of Powdered Cellulose Nanofiber with Different Particle Sizes on the Physical Properties of Tablets Manufactured via Direct Compression. Nakamura S; Jinno M; Hamaoka M; Sakurada A; Sakamoto T Chem Pharm Bull (Tokyo); 2023; 71(12):887-896. PubMed ID: 38044141 [TBL] [Abstract][Full Text] [Related]
4. Utility of Microcrystalline Cellulose for Improving Drug Content Uniformity in Tablet Manufacturing Using Direct Powder Compression. Nakamura S; Tanaka C; Yuasa H; Sakamoto T AAPS PharmSciTech; 2019 Mar; 20(4):151. PubMed ID: 30903317 [TBL] [Abstract][Full Text] [Related]
6. Transfer and scale-up of the manufacturing of orodispersible mini-tablets from a compaction simulator to an industrial rotary tablet press. Lura A; Elezaj V; Kokott M; Fischer B; Breitkreutz J Int J Pharm; 2021 Jun; 602():120636. PubMed ID: 33895296 [TBL] [Abstract][Full Text] [Related]
7. Effects of Granulated Lactose Characteristics and Lubricant Blending Conditions on Tablet Physical Properties in Direct Powder Compression. Nakamura S; Ito N; Sakurada A; Sakamoto T Chem Pharm Bull (Tokyo); 2023; 71(9):687-694. PubMed ID: 37661374 [TBL] [Abstract][Full Text] [Related]
8. Real-time monitoring of pharmaceutical properties of medical tablets during direct tableting process by hybrid tableting process parameter-time profiles. Saito S; Hattori Y; Sakamoto T; Otsuka M Biomed Mater Eng; 2020; 30(5-6):509-524. PubMed ID: 31771033 [TBL] [Abstract][Full Text] [Related]
9. Continuous direct tablet compression: effects of impeller rotation rate, total feed rate and drug content on the tablet properties and drug release. Järvinen MA; Paaso J; Paavola M; Leiviskä K; Juuti M; Muzzio F; Järvinen K Drug Dev Ind Pharm; 2013 Nov; 39(11):1802-8. PubMed ID: 23163644 [TBL] [Abstract][Full Text] [Related]
10. A quality-by-design study for an immediate-release tablet platform: examining the relative impact of active pharmaceutical ingredient properties, processing methods, and excipient variability on drug product quality attributes. Kushner J; Langdon BA; Hicks I; Song D; Li F; Kathiria L; Kane A; Ranade G; Agarwal K J Pharm Sci; 2014 Feb; 103(2):527-38. PubMed ID: 24375069 [TBL] [Abstract][Full Text] [Related]
11. Predictive model for tensile strength of pharmaceutical tablets based on local hardness measurements. Juban A; Nouguier-Lehon C; Briancon S; Hoc T; Puel F Int J Pharm; 2015 Jul; 490(1-2):438-45. PubMed ID: 26043825 [TBL] [Abstract][Full Text] [Related]
12. Application of general multilevel factorial design with formulation of fast disintegrating tablets containing croscaremellose sodium and Disintequick MCC-25. Solaiman A; Suliman AS; Shinde S; Naz S; Elkordy AA Int J Pharm; 2016 Mar; 501(1-2):87-95. PubMed ID: 26827922 [TBL] [Abstract][Full Text] [Related]
13. Influence of excipients, drugs, and osmotic agent in the inner core on the time-controlled disintegration of compression-coated ethylcellulose tablets. Lin SY; Lin KH; Li MJ J Pharm Sci; 2002 Sep; 91(9):2040-6. PubMed ID: 12210050 [TBL] [Abstract][Full Text] [Related]
14. Functionality of disintegrants with different mechanisms after roll compaction. Berkenkemper S; Keizer HL; Lindenberg M; Szepes A; Kleinebudde P Int J Pharm; 2020 Jun; 584():119434. PubMed ID: 32439584 [TBL] [Abstract][Full Text] [Related]
15. Setting Ideal Lubricant Mixing Time for Manufacturing Tablets by Evaluating Powder Flowability. Nakamura S; Yamaguchi S; Hiraide R; Iga K; Sakamoto T; Yuasa H AAPS PharmSciTech; 2017 Oct; 18(7):2832-2840. PubMed ID: 28357684 [TBL] [Abstract][Full Text] [Related]
16. Effect of disintegrants on the properties of multiparticulate tablets comprising starch pellets and excipient granules. Mehta S; De Beer T; Remon JP; Vervaet C Int J Pharm; 2012 Jan; 422(1-2):310-7. PubMed ID: 22101283 [TBL] [Abstract][Full Text] [Related]
17. A Method for the Tensile Strength Prediction of Tablets with Differing Powder Plasticities. Yano T; Oshiro A; Ohsaki S; Nakamura H; Watano S Chem Pharm Bull (Tokyo); 2024; 72(4):374-380. PubMed ID: 38599850 [TBL] [Abstract][Full Text] [Related]
18. Challenges in the transfer and scale-up of mini-tableting: Case study with losartan potassium. Lura V; Klinken S; Breitkreutz J Eur J Pharm Biopharm; 2023 Nov; 192():161-173. PubMed ID: 37820883 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of different fast melting disintegrants by means of a central composite design. Di Martino P; Martelli S; Wehrlé P Drug Dev Ind Pharm; 2005 Jan; 31(1):109-21. PubMed ID: 15704862 [TBL] [Abstract][Full Text] [Related]
20. The Effects of Feed Frame Parameters and Turret Speed on Mini-Tablet Compression. Goh HP; Sia Heng PW; Liew CV J Pharm Sci; 2019 Mar; 108(3):1161-1171. PubMed ID: 30237030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]