These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
473 related articles for article (PubMed ID: 36047281)
1. Auto-segmentation of important centers of growth in the pediatric skeleton to consider during radiation therapy based on deep learning. Qiu W; Zhang W; Ma X; Kong Y; Shi P; Fu M; Wang D; Hu M; Zhou X; Dong Q; Zhou Q; Zhu J Med Phys; 2023 Jan; 50(1):284-296. PubMed ID: 36047281 [TBL] [Abstract][Full Text] [Related]
2. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process. Duan J; Bernard M; Downes L; Willows B; Feng X; Mourad WF; St Clair W; Chen Q Med Phys; 2022 Apr; 49(4):2570-2581. PubMed ID: 35147216 [TBL] [Abstract][Full Text] [Related]
3. Efficient application of deep learning-based elective lymph node regions delineation for pelvic malignancies. Wen F; Zhou J; Chen Z; Dou M; Yao Y; Wang X; Xu F; Shen Y Med Phys; 2024 Oct; 51(10):7057-7066. PubMed ID: 39072765 [TBL] [Abstract][Full Text] [Related]
4. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer. Ahn SH; Yeo AU; Kim KH; Kim C; Goh Y; Cho S; Lee SB; Lim YK; Kim H; Shin D; Kim T; Kim TH; Youn SH; Oh ES; Jeong JH Radiat Oncol; 2019 Nov; 14(1):213. PubMed ID: 31775825 [TBL] [Abstract][Full Text] [Related]
5. Clinical Validation of a Deep-Learning Segmentation Software in Head and Neck: An Early Analysis in a Developing Radiation Oncology Center. D'Aviero A; Re A; Catucci F; Piccari D; Votta C; Piro D; Piras A; Di Dio C; Iezzi M; Preziosi F; Menna S; Quaranta F; Boschetti A; Marras M; Miccichè F; Gallus R; Indovina L; Bussu F; Valentini V; Cusumano D; Mattiucci GC Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897425 [TBL] [Abstract][Full Text] [Related]
6. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery. Chung SY; Chang JS; Choi MS; Chang Y; Choi BS; Chun J; Keum KC; Kim JS; Kim YB Radiat Oncol; 2021 Feb; 16(1):44. PubMed ID: 33632248 [TBL] [Abstract][Full Text] [Related]
7. Patient-specific transfer learning for auto-segmentation in adaptive 0.35 T MRgRT of prostate cancer: a bi-centric evaluation. Kawula M; Hadi I; Nierer L; Vagni M; Cusumano D; Boldrini L; Placidi L; Corradini S; Belka C; Landry G; Kurz C Med Phys; 2023 Mar; 50(3):1573-1585. PubMed ID: 36259384 [TBL] [Abstract][Full Text] [Related]
8. An uncertainty-aware deep learning architecture with outlier mitigation for prostate gland segmentation in radiotherapy treatment planning. Li X; Bagher-Ebadian H; Gardner S; Kim J; Elshaikh M; Movsas B; Zhu D; Chetty IJ Med Phys; 2023 Jan; 50(1):311-322. PubMed ID: 36112996 [TBL] [Abstract][Full Text] [Related]
9. Clinical implementation of MRI-based organs-at-risk auto-segmentation with convolutional networks for prostate radiotherapy. Savenije MHF; Maspero M; Sikkes GG; van der Voort van Zyp JRN; T J Kotte AN; Bol GH; T van den Berg CA Radiat Oncol; 2020 May; 15(1):104. PubMed ID: 32393280 [TBL] [Abstract][Full Text] [Related]
10. Gross tumor volume segmentation for head and neck cancer radiotherapy using deep dense multi-modality network. Guo Z; Guo N; Gong K; Zhong S; Li Q Phys Med Biol; 2019 Oct; 64(20):205015. PubMed ID: 31514173 [TBL] [Abstract][Full Text] [Related]
11. A deep image-to-image network organ segmentation algorithm for radiation treatment planning: principles and evaluation. Marschner S; Datar M; Gaasch A; Xu Z; Grbic S; Chabin G; Geiger B; Rosenman J; Corradini S; Niyazi M; Heimann T; Möhler C; Vega F; Belka C; Thieke C Radiat Oncol; 2022 Jul; 17(1):129. PubMed ID: 35869525 [TBL] [Abstract][Full Text] [Related]
12. Clinical evaluation of deep learning and atlas-based auto-segmentation for critical organs at risk in radiation therapy. Gibbons E; Hoffmann M; Westhuyzen J; Hodgson A; Chick B; Last A J Med Radiat Sci; 2023 Apr; 70 Suppl 2(Suppl 2):15-25. PubMed ID: 36148621 [TBL] [Abstract][Full Text] [Related]
13. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Men K; Dai J; Li Y Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional deep neural network for automatic delineation of cervical cancer in planning computed tomography images. Ding Y; Chen Z; Wang Z; Wang X; Hu D; Ma P; Ma C; Wei W; Li X; Xue X; Wang X J Appl Clin Med Phys; 2022 Apr; 23(4):e13566. PubMed ID: 35192243 [TBL] [Abstract][Full Text] [Related]
15. Deep learning vs. atlas-based models for fast auto-segmentation of the masticatory muscles on head and neck CT images. Chen W; Li Y; Dyer BA; Feng X; Rao S; Benedict SH; Chen Q; Rong Y Radiat Oncol; 2020 Jul; 15(1):176. PubMed ID: 32690103 [TBL] [Abstract][Full Text] [Related]
16. Patient-specific daily updated deep learning auto-segmentation for MRI-guided adaptive radiotherapy. Li Z; Zhang W; Li B; Zhu J; Peng Y; Li C; Zhu J; Zhou Q; Yin Y Radiother Oncol; 2022 Dec; 177():222-230. PubMed ID: 36375561 [TBL] [Abstract][Full Text] [Related]
17. Deep learning-based auto-segmentation of clinical target volumes for radiotherapy treatment of cervical cancer. Ma CY; Zhou JY; Xu XT; Guo J; Han MF; Gao YZ; Du H; Stahl JN; Maltz JS J Appl Clin Med Phys; 2022 Feb; 23(2):e13470. PubMed ID: 34807501 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of a deep image-to-image network (DI2IN) auto-segmentation algorithm across a network of cancer centers. Rayn K; Gupta V; Mulinti S; Clark R; Magliari A; Chaudhari S; Garima G; Beriwal S J Cancer Res Ther; 2024 Apr; 20(3):1020-1025. PubMed ID: 39023610 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of auto-segmentation for EBRT planning structures using deep learning-based workflow on cervical cancer. Wang J; Chen Y; Xie H; Luo L; Tang Q Sci Rep; 2022 Aug; 12(1):13650. PubMed ID: 35953516 [TBL] [Abstract][Full Text] [Related]
20. Pelvic U-Net: multi-label semantic segmentation of pelvic organs at risk for radiation therapy anal cancer patients using a deeply supervised shuffle attention convolutional neural network. Lempart M; Nilsson MP; Scherman J; Gustafsson CJ; Nilsson M; Alkner S; Engleson J; Adrian G; Munck Af Rosenschöld P; Olsson LE Radiat Oncol; 2022 Jun; 17(1):114. PubMed ID: 35765038 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]