BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 36047382)

  • 1. Segmentation and volume quantification of epicardial adipose tissue in computed tomography images.
    Li Y; Song S; Sun Y; Bao N; Yang B; Xu L
    Med Phys; 2022 Oct; 49(10):6477-6490. PubMed ID: 36047382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic quantification of epicardial adipose tissue volume.
    Li X; Sun Y; Xu L; Greenwald SE; Zhang L; Zhang R; You H; Yang B
    Med Phys; 2021 Aug; 48(8):4279-4290. PubMed ID: 34062000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic segmentation and quantification of epicardial adipose tissue from coronary computed tomography angiography.
    He X; Guo BJ; Lei Y; Wang T; Fu Y; Curran WJ; Zhang LJ; Liu T; Yang X
    Phys Med Biol; 2020 May; 65(9):095012. PubMed ID: 32182595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A semi-automatic approach for epicardial adipose tissue segmentation and quantification on cardiac CT scans.
    Militello C; Rundo L; Toia P; Conti V; Russo G; Filorizzo C; Maffei E; Cademartiri F; La Grutta L; Midiri M; Vitabile S
    Comput Biol Med; 2019 Nov; 114():103424. PubMed ID: 31521896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based workflow for automatic extraction of atria and epicardial adipose tissue on cardiac computed tomography in atrial fibrillation.
    Kuo L; Wang GJ; Su PH; Chang SL; Lin YJ; Chung FP; Lo LW; Hu YF; Lin CY; Chang TY; Chen SA; Lu CF
    J Chin Med Assoc; 2024 May; 87(5):471-479. PubMed ID: 38380919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning for Quantification of Epicardial and Thoracic Adipose Tissue From Non-Contrast CT.
    Commandeur F; Goeller M; Betancur J; Cadet S; Doris M; Chen X; Berman DS; Slomka PJ; Tamarappoo BK; Dey D
    IEEE Trans Med Imaging; 2018 Aug; 37(8):1835-1846. PubMed ID: 29994362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic quantification of epicardial fat volume on non-enhanced cardiac CT scans using a multi-atlas segmentation approach.
    Shahzad R; Bos D; Metz C; Rossi A; Kirisli H; van der Lugt A; Klein S; Witteman J; de Feyter P; Niessen W; van Vliet L; van Walsum T
    Med Phys; 2013 Sep; 40(9):091910. PubMed ID: 24007161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ABCNet: A new efficient 3D dense-structure network for segmentation and analysis of body tissue composition on body-torso-wide CT images.
    Liu T; Pan J; Torigian DA; Xu P; Miao Q; Tong Y; Udupa JK
    Med Phys; 2020 Jul; 47(7):2986-2999. PubMed ID: 32170754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning segmentation and quantification method for assessing epicardial adipose tissue in CT calcium score scans.
    Hoori A; Hu T; Lee J; Al-Kindi S; Rajagopalan S; Wilson DL
    Sci Rep; 2022 Feb; 12(1):2276. PubMed ID: 35145186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic Deep Learning Segmentation and Quantification of Epicardial Adipose Tissue in Non-Contrast Cardiac CT scans.
    Hoori A; Hu T; Al-Kindi S; Rajagopalan S; Wilson DL
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3938-3942. PubMed ID: 34892093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An 8-layer residual U-Net with deep supervision for segmentation of the left ventricle in cardiac CT angiography.
    Li C; Song X; Zhao H; Feng L; Hu T; Zhang Y; Jiang J; Wang J; Xiang J; Sun Y
    Comput Methods Programs Biomed; 2021 Mar; 200():105876. PubMed ID: 33293183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic epicardial adipose tissue segmentation in pulmonary computed tomography venography using nnU-Net.
    Hu Y; Jiang S; Yu X; Huang S; Lan Z; Yu Y; Zhang X; Chen J; Zhang J
    Quant Imaging Med Surg; 2023 Oct; 13(10):6482-6492. PubMed ID: 37869313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmentation of Coronary Arteries Images Using Spatio-temporal Feature Fusion Network with Combo Loss.
    Zhu H; Song S; Xu L; Song A; Yang B
    Cardiovasc Eng Technol; 2022 Jun; 13(3):407-418. PubMed ID: 34734373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DFR-U-Net: Dual residual and feature fusion network for ulna and radius segmentation on dual-energy X-ray absorptiometry images.
    Yang F; Weng X; Wu Y; Miao Y; Lei P; Hu Z
    J Xray Sci Technol; 2023; 31(3):641-653. PubMed ID: 37038803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of epicardial adipose tissue by cardiac CT: Influence of acquisition parameters and contrast enhancement.
    Marwan M; Koenig S; Schreiber K; Ammon F; Goeller M; Bittner D; Achenbach S; Hell MM
    Eur J Radiol; 2019 Dec; 121():108732. PubMed ID: 31711022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images.
    Zhang Z; Zhao T; Gay H; Zhang W; Sun B
    Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SAR-U-Net: Squeeze-and-excitation block and atrous spatial pyramid pooling based residual U-Net for automatic liver segmentation in Computed Tomography.
    Wang J; Lv P; Wang H; Shi C
    Comput Methods Programs Biomed; 2021 Sep; 208():106268. PubMed ID: 34274611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets.
    Fashandi H; Kuling G; Lu Y; Wu H; Martel AL
    Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic Deep-Learning Segmentation of Epicardial Adipose Tissue from Low-Dose Chest CT and Prognosis Impact on COVID-19.
    Bartoli A; Fournel J; Ait-Yahia L; Cadour F; Tradi F; Ghattas B; Cortaredona S; Million M; Lasbleiz A; Dutour A; Gaborit B; Jacquier A
    Cells; 2022 Mar; 11(6):. PubMed ID: 35326485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
    Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A
    Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.