BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36047387)

  • 1. Transcranial ultrasound simulations: A review.
    Angla C; Larrat B; Gennisson JL; Chatillon S
    Med Phys; 2023 Feb; 50(2):1051-1072. PubMed ID: 36047387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A head template for computational dose modelling for transcranial focused ultrasound stimulation.
    Hosseini S; Puonti O; Treeby B; Hanson LG; Thielscher A
    Neuroimage; 2023 Aug; 277():120227. PubMed ID: 37321357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity of simulated transcranial ultrasound fields to acoustic medium property maps.
    Robertson J; Martin E; Cox B; Treeby BE
    Phys Med Biol; 2017 Apr; 62(7):2559-2580. PubMed ID: 28165334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A viscoelastic model for the prediction of transcranial ultrasound propagation: application for the estimation of shear acoustic properties in the human skull.
    Pichardo S; Moreno-Hernández C; Andrew Drainville R; Sin V; Curiel L; Hynynen K
    Phys Med Biol; 2017 Aug; 62(17):6938-6962. PubMed ID: 28783716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of image homogenisation on simulated transcranial ultrasound propagation.
    Robertson J; Urban J; Stitzel J; Treeby BE
    Phys Med Biol; 2018 Jul; 63(14):145014. PubMed ID: 29897047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcranial ultrasound simulation with uncertainty estimation.
    Stanziola A; Pineda-Pardo JA; Treeby B
    JASA Express Lett; 2023 May; 3(5):. PubMed ID: 37166991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcranial MR Imaging-Guided Focused Ultrasound Interventions Using Deep Learning Synthesized CT.
    Su P; Guo S; Roys S; Maier F; Bhat H; Melhem ER; Gandhi D; Gullapalli RP; Zhuo J
    AJNR Am J Neuroradiol; 2020 Oct; 41(10):1841-1848. PubMed ID: 32883668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simulation study on the sensitivity of transcranial ray-tracing ultrasound modeling to skull properties.
    Drainville RA; Chatillon S; Moore D; Snell J; Padilla F; Lafon C
    J Acoust Soc Am; 2023 Aug; 154(2):1211-1225. PubMed ID: 37610718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcranial phase aberration correction using beam simulations and MR-ARFI.
    Vyas U; Kaye E; Pauly KB
    Med Phys; 2014 Mar; 41(3):032901. PubMed ID: 24593740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound.
    Mueller JK; Ai L; Bansal P; Legon W
    J Neural Eng; 2017 Dec; 14(6):066012. PubMed ID: 28777075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study.
    Jones RM; O'Reilly MA; Hynynen K
    Phys Med Biol; 2013 Jul; 58(14):4981-5005. PubMed ID: 23807573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multivariable-incorporating super-resolution residual network for transcranial focused ultrasound simulation.
    Shin M; Peng Z; Kim HJ; Yoo SS; Yoon K
    Comput Methods Programs Biomed; 2023 Jul; 237():107591. PubMed ID: 37182263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dual-mode hemispherical sparse array for 3D passive acoustic mapping and skull localization within a clinical MRI guided focused ultrasound device.
    Crake C; Brinker ST; Coviello CM; Livingstone MS; McDannold NJ
    Phys Med Biol; 2018 Mar; 63(6):065008. PubMed ID: 29459494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computationally Efficient Transcranial Ultrasonic Focusing: Taking Advantage of the High Correlation Length of the Human Skull.
    Maimbourg G; Guilbert J; Bancel T; Houdouin A; Raybaud G; Tanter M; Aubry JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Oct; 67(10):1993-2002. PubMed ID: 32396081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-layer model with absorption for conservative estimation of the maximum acoustic transmission coefficient through the human skull for transcranial ultrasound stimulation.
    Attali D; Tiennot T; Schafer M; Fouragnan E; Sallet J; Caskey CF; Chen R; Darmani G; Bubrick EJ; Butler C; Stagg CJ; Klein-Flügge M; Verhagen L; Yoo SS; Pauly KB; Aubry JF
    Brain Stimul; 2023; 16(1):48-55. PubMed ID: 36549480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient method for transcranial ultrasound focus correction based on the coupling of boundary integrals and finite elements.
    Shen F; Fan F; Li F; Wang L; Wang R; Wang Y; Liu T; Wei C; Niu H
    Ultrasonics; 2024 Feb; 137():107181. PubMed ID: 37847943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Ultrasound Transmission through Skull Using Flexible Matching Layer with Gradual Acoustic Impedance.
    Chen T; Chen J; Yi Z; Zheng C; Zhou L; Wu Y; Cai F; Qin J; Hong Z; Huang Y
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):55510-55517. PubMed ID: 37991837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steering Capabilities of an Acoustic Lens for Transcranial Therapy: Numerical and Experimental Studies.
    Maimbourg G; Houdouin A; Deffieux T; Tanter M; Aubry JF
    IEEE Trans Biomed Eng; 2020 Jan; 67(1):27-37. PubMed ID: 30932823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic Simulation for Transcranial Focused Ultrasound Using GAN-Based Synthetic CT.
    Koh H; Park TY; Chung YA; Lee JH; Kim H
    IEEE J Biomed Health Inform; 2022 Jan; 26(1):161-171. PubMed ID: 34388098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers.
    Maimbourg G; Houdouin A; Deffieux T; Tanter M; Aubry JF
    Phys Med Biol; 2018 Jan; 63(2):025026. PubMed ID: 29219124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.