These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36047510)

  • 1. Identification of DNA nucleotides by conductance and tunnelling current variation through borophene nanogaps.
    Jena MK; Pathak B
    Phys Chem Chem Phys; 2022 Sep; 24(35):21427-21439. PubMed ID: 36047510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying DNA Nucleotides via Transverse Electronic Transport in Atomically Thin Topologically Defected Graphene Electrodes.
    Kumawat RL; Pathak B
    ACS Appl Bio Mater; 2021 Feb; 4(2):1403-1412. PubMed ID: 35014491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic Transport through DNA Nucleotides in Atomically Thin Phosphorene Electrodes for Rapid DNA Sequencing.
    Kumawat RL; Garg P; Kumar S; Pathak B
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):219-225. PubMed ID: 30540178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying Single-Stranded DNA by Tuning the Graphene Nanogap Size: An Ionic Current Approach.
    Kumawat RL; Pathak B
    J Phys Chem B; 2022 Feb; 126(6):1178-1187. PubMed ID: 35108006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalized Nanogap for DNA Read-Out: Nucleotide Rotation and Current-Voltage Curves.
    Maier FC; Fyta M
    Chemphyschem; 2020 Sep; 21(18):2068-2074. PubMed ID: 32721095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transverse conductance of DNA nucleotides in a graphene nanogap from first principles.
    Prasongkit J; Grigoriev A; Pathak B; Ahuja R; Scheicher RH
    Nano Lett; 2011 May; 11(5):1941-5. PubMed ID: 21495701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-plane graphene/h-BN/graphene heterostructures with nanopores for electrical detection of DNA nucleotides.
    Kiakojouri A; Frank I; Nadimi E
    Phys Chem Chem Phys; 2021 Nov; 23(44):25126-25135. PubMed ID: 34729571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanogap-based all-electronic DNA sequencing devices using MoS
    Perez A; Amorim RG; Villegas CEP; Rocha AR
    Phys Chem Chem Phys; 2020 Dec; 22(46):27053-27059. PubMed ID: 33215614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalized carbon nanotube electrodes for controlled DNA sequencing.
    Kumawat RL; Pathak B
    Nanoscale Adv; 2020 Sep; 2(9):4041-4050. PubMed ID: 36132799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conductance and tunnelling current characteristics for individual identification of synthetic nucleic acids with a graphene device.
    Kumawat RL; Pathak B
    Phys Chem Chem Phys; 2022 Jul; 24(26):15756-15766. PubMed ID: 35757959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field Effect and Local Gating in Nitrogen-Terminated Nanopores (NtNP) and Nanogaps (NtNG) in Graphene.
    Djurišić I; Dražić MS; Tomović AŽ; Spasenović M; Šljivančanin Ž; Jovanović VP; Zikic R
    Chemphyschem; 2021 Feb; 22(3):336-341. PubMed ID: 33245835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalized electrodes embedded in nanopores: read-out enhancement?
    Fyta M
    Chem Asian J; 2023 Jan; 18(1):e202200916. PubMed ID: 36372991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA sequencing based on electronic tunneling in a gold nanogap: a first-principles study.
    Zou H; Wen S; Wu X; Wong KW; Yam C
    Phys Chem Chem Phys; 2022 Mar; 24(9):5748-5754. PubMed ID: 35191434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled current confinement in interfaced 2D nanosensor for electrical identification of DNA.
    L de Souza FA; Amorim RG; Scopel WL; Scheicher RH
    Phys Chem Chem Phys; 2019 Dec; 21(45):24884-24890. PubMed ID: 31584588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precision Basecalling of Single DNA Nucleotide from Overlapped Transmission Readouts with Machine Learning Aided Solid-State Nanogap.
    Jena MK; Mittal S; Pathak B
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):29891-29901. PubMed ID: 38818926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic analysis of hydrogen-bonded molecular complexes: the case of DNA sensed in a functionalized nanogap.
    Maier FC; Fyta M
    RSC Adv; 2023 Jan; 13(4):2530-2537. PubMed ID: 36741157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio electron propagator calculations of transverse conduction through DNA nucleotide bases in 1-nm nanopore corroborate third generation sequencing.
    Kletsov AA; Glukhovskoy EG; Chumakov AS; Ortiz JV
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt A):140-5. PubMed ID: 26525735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of nucleobases on borophene nanosheet: A DFT investigation.
    Sabokdast S; Horri A; Azar YT; Momeni M; Tavakoli MB
    Bioelectrochemistry; 2021 Apr; 138():107721. PubMed ID: 33360587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition Tunneling of Canonical and Modified RNA Nucleotides for Their Identification with the Aid of Machine Learning.
    Im J; Sen S; Lindsay S; Zhang P
    ACS Nano; 2018 Jul; 12(7):7067-7075. PubMed ID: 29932668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering DNA nucleotide sequences and their rotation dynamics with interpretable machine learning integrated C
    Jena MK; Mittal S; Manna SS; Pathak B
    Nanoscale; 2023 Nov; 15(44):18080-18092. PubMed ID: 37916991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.