These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36048419)

  • 41. Strain amplification analysis of an osteocyte under static and cyclic loading: a finite element study.
    Wang L; Dong J; Xian CJ
    Biomed Res Int; 2015; 2015():376474. PubMed ID: 25664319
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inter-site Variability of the Human Osteocyte Lacunar Network: Implications for Bone Quality.
    Milovanovic P; Busse B
    Curr Osteoporos Rep; 2019 Jun; 17(3):105-115. PubMed ID: 30980284
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Voluntary exercise has long-term in vivo protective effects on osteocyte viability and bone strength following ovariectomy.
    Fonseca H; Moreira-Gonçalves D; Esteves JL; Viriato N; Vaz M; Mota MP; Duarte JA
    Calcif Tissue Int; 2011 Jun; 88(6):443-54. PubMed ID: 21416225
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Osteocyte shape and mechanical loading.
    van Oers RF; Wang H; Bacabac RG
    Curr Osteoporos Rep; 2015 Apr; 13(2):61-6. PubMed ID: 25663071
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Osteocytes and mechanical stress].
    Kamioka H; Yamashiro T
    Clin Calcium; 2008 Sep; 18(9):1287-93. PubMed ID: 18758034
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanical loading activates the YAP/TAZ pathway and chemokine expression in the MLO-Y4 osteocyte-like cell line.
    Zarka M; Etienne F; Bourmaud M; Szondi D; Schwartz JM; Kampmann K; Helary C; Rannou F; Haÿ E; Cohen-Solal M
    Lab Invest; 2021 Dec; 101(12):1597-1604. PubMed ID: 34521992
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluating differential nuclear DNA yield rates and osteocyte numbers among human bone tissue types: A synchrotron radiation micro-CT approach.
    Andronowski JM; Mundorff AZ; Pratt IV; Davoren JM; Cooper DML
    Forensic Sci Int Genet; 2017 May; 28():211-218. PubMed ID: 28315820
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanosensory responses of osteocytes to physiological forces occur along processes and not cell body and require αVβ3 integrin.
    Thi MM; Suadicani SO; Schaffler MB; Weinbaum S; Spray DC
    Proc Natl Acad Sci U S A; 2013 Dec; 110(52):21012-7. PubMed ID: 24324138
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reduced Bone Mass and Increased Osteocyte Tartrate-Resistant Acid Phosphatase (TRAP) Activity, But Not Low Mineralized Matrix Around Osteocyte Lacunae, Are Restored After Recovery From Exogenous Hyperthyroidism in Male Mice.
    Wölfel EM; Lademann F; Hemmatian H; Blouin S; Messmer P; Hofbauer LC; Busse B; Rauner M; Jähn-Rickert K; Tsourdi E
    J Bone Miner Res; 2023 Jan; 38(1):131-143. PubMed ID: 36331133
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Osteocyte lacunar occupancy in the femoral neck cortex: an association with cortical remodeling in hip fracture cases and controls.
    Power J; Noble BS; Loveridge N; Bell KL; Rushton N; Reeve J
    Calcif Tissue Int; 2001 Jul; 69(1):13-9. PubMed ID: 11685428
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluating the Role of Canalicular Morphology and Perilacunar Region Properties on Local Mechanical Environment of Lacunar-Canalicular Network Using Finite Element Modeling.
    Sang W; Ural A
    J Biomech Eng; 2023 Jun; 145(6):. PubMed ID: 36629002
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extracellular NO signalling from a mechanically stimulated osteocyte.
    Vatsa A; Smit TH; Klein-Nulend J
    J Biomech; 2007; 40 Suppl 1():S89-95. PubMed ID: 17512530
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Computational study of the mechanical influence of lacunae and perilacunar zones in cortical bone microcracking.
    Josephson TO; Moore JP; Maghami E; Freeman TA; Najafi AR
    J Mech Behav Biomed Mater; 2022 Feb; 126():105029. PubMed ID: 34971951
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A theory for bone resorption based on the local rupture of osteocytes cells connections: A finite element study.
    Ridha H; Almitani KH; Chamekh A; Toumi H; Tavares JM
    Math Biosci; 2015 Apr; 262():46-55. PubMed ID: 25640868
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes.
    Verbruggen SW; Vaughan TJ; McNamara LM
    J R Soc Interface; 2012 Oct; 9(75):2735-44. PubMed ID: 22675160
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Novel Osteogenic Cell Line That Differentiates Into GFP-Tagged Osteocytes and Forms Mineral With a Bone-Like Lacunocanalicular Structure.
    Wang K; Le L; Chun BM; Tiede-Lewis LM; Shiflett LA; Prideaux M; Campos RS; Veno PA; Xie Y; Dusevich V; Bonewald LF; Dallas SL
    J Bone Miner Res; 2019 Jun; 34(6):979-995. PubMed ID: 30882939
    [TBL] [Abstract][Full Text] [Related]  

  • 57.
    Gould NR; Leser JM; Torre OM; Khairallah RJ; Ward CW; Stains JP
    Bio Protoc; 2021 Dec; 11(23):e4251. PubMed ID: 35005095
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Computational framework for analyzing flow-induced strain on osteocyte as modulated by microenvironment.
    Kameo Y; Ozasa M; Adachi T
    J Mech Behav Biomed Mater; 2022 Feb; 126():105027. PubMed ID: 34920322
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Alterations in osteocyte lacunar morphology affect local bone tissue strains.
    Hemmatian H; Bakker AD; Klein-Nulend J; van Lenthe GH
    J Mech Behav Biomed Mater; 2021 Nov; 123():104730. PubMed ID: 34438250
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Finite Element Models of Osteocytes and Their Load-Induced Activation.
    Smit TH
    Curr Osteoporos Rep; 2022 Apr; 20(2):127-140. PubMed ID: 35298773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.