BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 36048424)

  • 1. Genome Editing by CRISPR/Cas12 Recognizing AT-Rich PAMs in
    Chen Y; Cheng M; Feng X; Niu X; Song H; Cao Y
    ACS Synth Biol; 2022 Sep; 11(9):2947-2955. PubMed ID: 36048424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Whole Genome-Scale Base Editing Toolbox to Promote Efficiency of Extracellular Electron Transfer in Shewanella oneidensis MR-1.
    Chen Y; Fang L; Ying X; Cheng M; Wang L; Sun P; Zhang Z; Shi L; Cao Y; Song H
    Adv Biol (Weinh); 2022 Mar; 6(3):e2101296. PubMed ID: 35182055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient and Precise Genome Editing in
    Corts AD; Thomason LC; Gill RT; Gralnick JA
    ACS Synth Biol; 2019 Aug; 8(8):1877-1889. PubMed ID: 31277550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Enhancement of Extracellular Electron Transfer in
    Lin WQ; Cheng ZH; Wu QZ; Liu JQ; Liu DF; Sheng GP
    ACS Synth Biol; 2024 Jun; 13(6):1941-1951. PubMed ID: 38780992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-mediated genome editing of Shewanella oneidensis MR-1 using a broad host-range pBBR1-based plasmid.
    Suzuki Y; Kouzuma A; Watanabe K
    J Gen Appl Microbiol; 2020 Apr; 66(1):41-45. PubMed ID: 31447475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an efficient iterative genome editing method in Bacillus subtilis using the CRISPR-AsCpf1 system.
    Zhao X; Chen X; Xue Y; Wang X
    J Basic Microbiol; 2022 Jul; 62(7):824-832. PubMed ID: 35655368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing a base-editing system to expand the carbon source utilization spectra of Shewanella oneidensis MR-1 for enhanced pollutant degradation.
    Cheng L; Min D; He RL; Cheng ZH; Liu DF; Yu HQ
    Biotechnol Bioeng; 2020 Aug; 117(8):2389-2400. PubMed ID: 32356906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient genome editing in wheat using Cas9 and Cpf1 (AsCpf1 and LbCpf1) nucleases.
    Kim D; Hager M; Brant E; Budak H
    Funct Integr Genomics; 2021 Jul; 21(3-4):355-366. PubMed ID: 33710467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPRi-sRNA: Transcriptional-Translational Regulation of Extracellular Electron Transfer in Shewanella oneidensis.
    Cao Y; Li X; Li F; Song H
    ACS Synth Biol; 2017 Sep; 6(9):1679-1690. PubMed ID: 28616968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of CRISPR-Cas12b for human genome editing.
    Strecker J; Jones S; Koopal B; Schmid-Burgk J; Zetsche B; Gao L; Makarova KS; Koonin EV; Zhang F
    Nat Commun; 2019 Jan; 10(1):212. PubMed ID: 30670702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new recombineering system for precise genome-editing in Shewanella oneidensis strain MR-1 using single-stranded oligonucleotides.
    Corts AD; Thomason LC; Gill RT; Gralnick JA
    Sci Rep; 2019 Jan; 9(1):39. PubMed ID: 30631105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing a PAM-Flexible CRISPR-Mediated Dual-Deaminase Base Editor to Regulate Extracellular Electron Transport in
    Wang T; Zhang J; Wei L; Zhao D; Bi C; Liu Q; Xu N; Liu J
    ACS Synth Biol; 2023 Jun; 12(6):1727-1738. PubMed ID: 37212667
    [No Abstract]   [Full Text] [Related]  

  • 13. An update on CRISPR-Cas12 as a versatile tool in genome editing.
    Senthilnathan R; Ilangovan I; Kunale M; Easwaran N; Ramamoorthy S; Veeramuthu A; Kodiveri Muthukaliannan G
    Mol Biol Rep; 2023 Mar; 50(3):2865-2881. PubMed ID: 36641494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crispr/Cas9-mediated cleavages facilitate homologous recombination during genetic engineering of a large chromosomal region.
    Zhang F; Cheng D; Wang S; Zhu J
    Biotechnol Bioeng; 2020 Sep; 117(9):2816-2826. PubMed ID: 32449788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome Editing of Corynebacterium glutamicum Using CRISPR-Cpf1 System.
    Wen Z; Qian F; Zhang J; Jiang Y; Yang S
    Methods Mol Biol; 2022; 2479():189-206. PubMed ID: 35583740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production.
    Zhang J; Zong W; Hong W; Zhang ZT; Wang Y
    Metab Eng; 2018 May; 47():49-59. PubMed ID: 29530750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.
    Li K; Cai D; Wang Z; He Z; Chen S
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330178
    [No Abstract]   [Full Text] [Related]  

  • 18. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.
    Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T
    Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances in CRISPR/Cas9-Mediated Genome Editing in
    Muramoto T; Iriki H; Watanabe J; Kawata T
    Cells; 2019 Jan; 8(1):. PubMed ID: 30642074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription-coupled donor DNA expression increases homologous recombination for efficient genome editing.
    Gao K; Zhang X; Zhang Z; Wu X; Guo Y; Fu P; Sun A; Peng J; Zheng J; Yu P; Wang T; Ye Q; Jiang J; Wang H; Lin CP; Gao G
    Nucleic Acids Res; 2022 Oct; 50(19):e109. PubMed ID: 35929067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.