BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36048424)

  • 21. Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome.
    Wang Y; Liu X; Ren C; Zhong GY; Yang L; Li S; Liang Z
    BMC Plant Biol; 2016 Apr; 16():96. PubMed ID: 27098585
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice.
    Ren B; Liu L; Li S; Kuang Y; Wang J; Zhang D; Zhou X; Lin H; Zhou H
    Mol Plant; 2019 Jul; 12(7):1015-1026. PubMed ID: 30928635
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Markerless genome editing in Clostridium beijerinckii using the CRISPR-Cpf1 system.
    Zhang J; Hong W; Zong W; Wang P; Wang Y
    J Biotechnol; 2018 Oct; 284():27-30. PubMed ID: 30081040
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 25. TALEN- and CRISPR-enhanced DNA homologous recombination for gene editing in zebrafish.
    Zhang Y; Huang H; Zhang B; Lin S
    Methods Cell Biol; 2016; 135():107-20. PubMed ID: 27443922
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expanding plant genome-editing scope by an engineered iSpyMacCas9 system that targets A-rich PAM sequences.
    Sretenovic S; Yin D; Levav A; Selengut JD; Mount SM; Qi Y
    Plant Commun; 2021 Mar; 2(2):100101. PubMed ID: 33898973
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeted mutagenesis in Arabidopsis thaliana using CRISPR-Cas12b/C2c1.
    Wu F; Qiao X; Zhao Y; Zhang Z; Gao Y; Shi L; Du H; Wang L; Zhang YJ; Zhang Y; Liu L; Wang Q; Kong D
    J Integr Plant Biol; 2020 Nov; 62(11):1653-1658. PubMed ID: 32396228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae.
    Verwaal R; Buiting-Wiessenhaan N; Dalhuijsen S; Roubos JA
    Yeast; 2018 Feb; 35(2):201-211. PubMed ID: 28886218
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3'-overhang.
    Bin Moon S; Lee JM; Kang JG; Lee NE; Ha DI; Kim DY; Kim SH; Yoo K; Kim D; Ko JH; Kim YS
    Nat Commun; 2018 Sep; 9(1):3651. PubMed ID: 30194297
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CRISPR/Cas-Based Genome Editing for Human Gut Commensal
    Zheng L; Tan Y; Hu Y; Shen J; Qu Z; Chen X; Ho CL; Leung EL; Zhao W; Dai L
    ACS Synth Biol; 2022 Jan; 11(1):464-472. PubMed ID: 34990118
    [No Abstract]   [Full Text] [Related]  

  • 32. Systematic evaluation of CRISPR-Cas systems reveals design principles for genome editing in human cells.
    Wang Y; Liu KI; Sutrisnoh NB; Srinivasan H; Zhang J; Li J; Zhang F; Lalith CRJ; Xing H; Shanmugam R; Foo JN; Yeo HT; Ooi KH; Bleckwehl T; Par YYR; Lee SM; Ismail NNB; Sanwari NAB; Lee STV; Lew J; Tan MH
    Genome Biol; 2018 May; 19(1):62. PubMed ID: 29843790
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering Citrobacter freundii using CRISPR/Cas9 system.
    Alfaro T; Elmore JR; Stromberg ZR; Hutchison JR; Hess BM
    J Microbiol Methods; 2022 Sep; 200():106533. PubMed ID: 35779647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removal of extra sequences with I-SceI in combination with CRISPR/Cas9 technique for precise gene editing in Drosophila.
    Zolotarev N; Georgiev P; Maksimenko O
    Biotechniques; 2019 Apr; 66(4):198-201. PubMed ID: 30987444
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploiting heterologous and endogenous CRISPR-Cas systems for genome editing in the probiotic Clostridium butyricum.
    Zhou X; Wang X; Luo H; Wang Y; Wang Y; Tu T; Qin X; Su X; Bai Y; Yao B; Huang H; Zhang J
    Biotechnol Bioeng; 2021 Jul; 118(7):2448-2459. PubMed ID: 33719068
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome Editing in Klebsiella pneumoniae Using CRISPR/Cas9 Technology.
    Wang Z; Wang Y; Ji Q
    Methods Mol Biol; 2022; 2479():105-117. PubMed ID: 35583735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing.
    Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY
    Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPR/Cas9 editing genome of extremophile Halomonas spp.
    Qin Q; Ling C; Zhao Y; Yang T; Yin J; Guo Y; Chen GQ
    Metab Eng; 2018 May; 47():219-229. PubMed ID: 29609045
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expanding the scope of CRISPR/Cas9-mediated genome editing in plants using an xCas9 and Cas9-NG hybrid.
    Niu Q; Wu S; Li Y; Yang X; Liu P; Xu Y; Lang Z
    J Integr Plant Biol; 2020 Apr; 62(4):398-402. PubMed ID: 31702097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased mutation efficiency of CRISPR/Cas9 genome editing in banana by optimized construct.
    Zhang S; Wu S; Hu C; Yang Q; Dong T; Sheng O; Deng G; He W; Dou T; Li C; Sun C; Yi G; Bi F
    PeerJ; 2022; 10():e12664. PubMed ID: 35036088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.