These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 36048511)
1. Probing the Strong Nonadiabatic Interactions in the Triazolyl Radical Using Photodetachment Spectroscopy and Resonant Photoelectron Imaging of Cryogenically Cooled Anions. Zhang YR; Yuan DF; Wang LS J Am Chem Soc; 2022 Sep; 144(36):16620-16630. PubMed ID: 36048511 [TBL] [Abstract][Full Text] [Related]
2. Photodetachment spectroscopy and resonant photoelectron imaging of cryogenically cooled 1-pyrenolate. Qian CH; Zhang YR; Yuan DF; Wang LS J Chem Phys; 2021 Mar; 154(9):094308. PubMed ID: 33685163 [TBL] [Abstract][Full Text] [Related]
3. Dipole-Bound State, Photodetachment Spectroscopy, and Resonant Photoelectron Imaging of Cryogenically-Cooled 2-Cyanopyrrolide. Yuan DF; Zhang YR; Wang LS J Phys Chem A; 2022 Sep; 126(37):6416-6428. PubMed ID: 36097646 [TBL] [Abstract][Full Text] [Related]
4. Photodetachment spectroscopy and resonant photoelectron imaging of the 2-naphthoxide anion via dipole-bound excited states. Qian CH; Zhu GZ; Zhang YR; Wang LS J Chem Phys; 2020 Jun; 152(21):214307. PubMed ID: 32505147 [TBL] [Abstract][Full Text] [Related]
5. Dipole-bound excited states and resonant photoelectron imaging of phenoxide and thiophenoxide anions. Zhu GZ; Qian CH; Wang LS J Chem Phys; 2018 Oct; 149(16):164301. PubMed ID: 30384745 [TBL] [Abstract][Full Text] [Related]
6. Investigation of the Electronic and Vibrational Structures of the 2-Furanyloxy Radical Using Photoelectron Imaging and Photodetachment Spectroscopy via the Dipole-Bound State of the 2-Furanyloxide Anion. Zhang YR; Yuan DF; Wang LS J Phys Chem Lett; 2022 Dec; 13(49):11481-11488. PubMed ID: 36469423 [TBL] [Abstract][Full Text] [Related]
7. Observation of bound valence excited electronic states of deprotonated 2-hydroxytriphenylene using photoelectron, photodetachment, and resonant two-photon detachment spectroscopy of cryogenically cooled anions. Kang J; Brewer EI; Zhang YR; Yuan DF; Kocheril GS; Wang LS J Chem Phys; 2024 May; 160(18):. PubMed ID: 38716843 [TBL] [Abstract][Full Text] [Related]
8. Probing the Dipole-Bound State in the 9-Phenanthrolate Anion by Photodetachment Spectroscopy, Resonant Two-Photon Photoelectron Imaging, and Resonant Photoelectron Spectroscopy. Yuan DF; Zhang YR; Qian CH; Liu Y; Wang LS J Phys Chem A; 2021 Apr; 125(14):2967-2976. PubMed ID: 33797906 [TBL] [Abstract][Full Text] [Related]
9. Resonant two-photon photoelectron imaging and adiabatic detachment processes from bound vibrational levels of dipole-bound states. Yuan DF; Zhang YR; Qian CH; Wang LS Phys Chem Chem Phys; 2022 Jan; 24(3):1380-1389. PubMed ID: 34981094 [TBL] [Abstract][Full Text] [Related]
10. Probing Dipole-Bound States Using Photodetachment Spectroscopy and Resonant Photoelectron Imaging of Cryogenically Cooled Anions. Zhang YR; Yuan DF; Wang LS J Phys Chem Lett; 2023 Aug; 14(33):7368-7381. PubMed ID: 37565830 [TBL] [Abstract][Full Text] [Related]
11. Conformation-selective resonant photoelectron imaging from dipole-bound states of cold 3-hydroxyphenoxide. Zhu GZ; Huang DL; Wang LS J Chem Phys; 2017 Jul; 147(1):013910. PubMed ID: 28688412 [TBL] [Abstract][Full Text] [Related]
12. High-resolution photoelectron imaging and resonant photoelectron spectroscopy Zhu GZ; Wang LS Chem Sci; 2019 Nov; 10(41):9409-9423. PubMed ID: 32055317 [TBL] [Abstract][Full Text] [Related]
13. Vibrational state-selective autodetachment photoelectron spectroscopy from dipole-bound states of cold 2-hydroxyphenoxide: o-HO(C6H4)O(-). Huang DL; Liu HT; Ning CG; Wang LS J Chem Phys; 2015 Mar; 142(12):124309. PubMed ID: 25833581 [TBL] [Abstract][Full Text] [Related]
14. Probing the electronic structure and spectroscopy of pyrrolyl and imidazolyl radicals using high-resolution photoelectron imaging of cryogenically cooled anions. Zhang YR; Yuan DF; Wang LS Phys Chem Chem Phys; 2022 Mar; 24(11):6505-6514. PubMed ID: 35254373 [TBL] [Abstract][Full Text] [Related]
15. Probing the vibrational spectroscopy of the deprotonated thymine radical by photodetachment and state-selective autodetachment photoelectron spectroscopy Huang DL; Liu HT; Ning CG; Zhu GZ; Wang LS Chem Sci; 2015 May; 6(5):3129-3138. PubMed ID: 29142686 [TBL] [Abstract][Full Text] [Related]
16. High-Resolution Photoelectron Imaging and Photodetachment Spectroscopy of Cryogenically Cooled IO Wang YT; Ning CG; Liu HT; Wang LS J Phys Chem A; 2020 Jul; 124(28):5720-5726. PubMed ID: 32598157 [TBL] [Abstract][Full Text] [Related]
17. Role of Polarization Interactions in the Formation of Dipole-Bound States. Zhang YR; Yuan DF; Qian CH; Zhu GZ; Wang LS J Am Chem Soc; 2023 Jul; 145(27):14952-14962. PubMed ID: 37368495 [TBL] [Abstract][Full Text] [Related]
18. Spectroscopic observation of Feshbach resonances in the tellurium dimer anion. Yan S; Zhang R; Lu Y; Ning C J Chem Phys; 2024 Feb; 160(6):. PubMed ID: 38345114 [TBL] [Abstract][Full Text] [Related]
19. Vibrational and electronic structure of the α- and β-naphthyl radicals via slow photoelectron velocity-map imaging. Weichman ML; Kim JB; DeVine JA; Levine DS; Neumark DM J Am Chem Soc; 2015 Feb; 137(4):1420-3. PubMed ID: 25602742 [TBL] [Abstract][Full Text] [Related]
20. Observation of a Polarization-Assisted Dipole-Bound State. Yuan DF; Liu Y; Zhang YR; Wang LS J Am Chem Soc; 2023 Mar; 145(9):5512-5522. PubMed ID: 36809761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]