BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36048666)

  • 1. Group IV THz large area emitter based on GeSn alloy.
    Chen WC; Chang CW; Yang SH
    Opt Lett; 2022 Sep; 47(17):4411-4414. PubMed ID: 36048666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal evaporated group IV Ge(Sn)-on-Si terahertz photoconductive antenna.
    Chen WC; Yang SH
    Opt Express; 2022 Aug; 30(18):31742-31751. PubMed ID: 36242250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Up to 70 THz bandwidth from an implanted Ge photoconductive antenna excited by a femtosecond Er:fibre laser.
    Singh A; Pashkin A; Winnerl S; Welsch M; Beckh C; Sulzer P; Leitenstorfer A; Helm M; Schneider H
    Light Sci Appl; 2020; 9():30. PubMed ID: 32140221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Integrated Germanium-Based THz Impulse Radiator with an Optical Waveguide Coupled Photoconductive Switch in Silicon.
    Chen P; Hosseini M; Babakhani A
    Micromachines (Basel); 2019 May; 10(6):. PubMed ID: 31159233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance GeSn photodetector and fin field-effect transistor (FinFET) on an advanced GeSn-on-insulator platform.
    Wang W; Lei D; Huang YC; Lee KH; Loke WK; Dong Y; Xu S; Tan CS; Wang H; Yoon SF; Gong X; Yeo YC
    Opt Express; 2018 Apr; 26(8):10305-10314. PubMed ID: 29715969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of Bow-Tie Antenna Structures for Semi-Insulating GaAs and InP Photoconductive Terahertz Emitters.
    Alfihed S; Foulds IG; Holzman JF
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33946393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoconductive terahertz generation from textured semiconductor materials.
    Collier CM; Stirling TJ; Hristovski IR; Krupa JD; Holzman JF
    Sci Rep; 2016 Mar; 6():23185. PubMed ID: 26979292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "GeSn Rule-23"-The Performance Limit of GeSn Infrared Photodiodes.
    Chang GE; Yu SQ; Sun G
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. THz generation at 1.55 µm excitation: six-fold increase in THz conversion efficiency by separated photoconductive and trapping regions.
    Dietz RJ; Gerhard M; Stanze D; Koch M; Sartorius B; Schell M
    Opt Express; 2011 Dec; 19(27):25911-7. PubMed ID: 22274179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sub-wavelength Si LED integrated in a CMOS platform.
    Li Z; Xue J; de Cea M; Kim J; Nong H; Chong D; Lim KY; Quek E; Ram RJ
    Nat Commun; 2023 Feb; 14(1):882. PubMed ID: 36797286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intense terahertz generation from photoconductive antennas.
    Isgandarov E; Ropagnol X; Singh M; Ozaki T
    Front Optoelectron; 2021 Mar; 14(1):64-93. PubMed ID: 36637784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Microbolometer System for Radiation Detection in the THz Frequency Range with a Resonating Cavity Fabricated in the CMOS Technology.
    Sesek A; Zemva A; Trontelj J
    Recent Pat Nanotechnol; 2018 Feb; 12(1):34-44. PubMed ID: 28675992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrabroadband terahertz time-domain spectroscopy using III-V photoconductive membranes on silicon.
    Kohlhaas RB; Breuer S; Mutschall S; Kehrt M; Nellen S; Liebermeister L; Schell M; Globisch B
    Opt Express; 2022 Jun; 30(13):23896-23908. PubMed ID: 36225061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced GeSn/SiGeSn Group IV Heterostructure Lasers.
    von den Driesch N; Stange D; Rainko D; Povstugar I; Zaumseil P; Capellini G; Schröder T; Denneulin T; Ikonic Z; Hartmann JM; Sigg H; Mantl S; Grützmacher D; Buca D
    Adv Sci (Weinh); 2018 Jun; 5(6):1700955. PubMed ID: 29938172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature dependent spectral response and detectivity of GeSn photoconductors on silicon for short wave infrared detection.
    Conley BR; Mosleh A; Ghetmiri SA; Du W; Soref RA; Sun G; Margetis J; Tolle J; Naseem HA; Yu SQ
    Opt Express; 2014 Jun; 22(13):15639-52. PubMed ID: 24977823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber Coupled Transceiver with 6.5 THz Bandwidth for Terahertz Time-Domain Spectroscopy in Reflection Geometry.
    Kohlhaas RB; Liebermeister L; Breuer S; Amberg M; Felipe D; Nellen S; Schell M; Globisch B
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32375349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, fabrication, and experimental characterization of plasmonic photoconductive terahertz emitters.
    Berry C; Hashemi MR; Unlu M; Jarrahi M
    J Vis Exp; 2013 Jul; (77):e50517. PubMed ID: 23892574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband THz absorption spectrometer based on excitonic nonlinear optical effects.
    Majeed A; Ivanov P; Stevens B; Clarke E; Butler I; Childs D; Kojima O; Hogg R
    Light Sci Appl; 2019; 8():29. PubMed ID: 30886706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications.
    Jia S; Lo MC; Zhang L; Ozolins O; Udalcovs A; Kong D; Pang X; Guzman R; Yu X; Xiao S; Popov S; Chen J; Carpintero G; Morioka T; Hu H; Oxenløwe LK
    Nat Commun; 2022 Mar; 13(1):1388. PubMed ID: 35296670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Migration-Enhanced Epitaxial Growth of InAs/GaAs Short-Period Superlattices for THz Generation.
    Chen R; Li X; Du H; Yan J; Kong C; Liu G; Lu G; Zhang X; Song S; Zhang X; Liu L
    Nanomaterials (Basel); 2024 Jan; 14(3):. PubMed ID: 38334565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.