These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36048695)

  • 1. Epsilon-near-zero substrate-enabled strong coupling between molecular vibrations and mid-infrared plasmons.
    Ma P; Liu K; Huang G; Ding Y; Du W; Wang T
    Opt Lett; 2022 Sep; 47(17):4524-4527. PubMed ID: 36048695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrational Strong Coupling between Surface Phonon Polaritons and Organic Molecules via Single Quartz Micropillars.
    Liu K; Huang G; Li X; Zhu G; Du W; Wang T
    Adv Mater; 2022 Feb; 34(8):e2109088. PubMed ID: 34902196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong coupling between mid-infrared localized plasmons and phonons.
    Wan W; Yang X; Gao J
    Opt Express; 2016 May; 24(11):12367-74. PubMed ID: 27410151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon-phonon coupling between mid-infrared chiral metasurfaces and molecular vibrations.
    Mahmud MS; Rosenmann D; Czaplewski DA; Gao J; Yang X
    Opt Express; 2020 Jul; 28(14):21192-21201. PubMed ID: 32680164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrational Strong Coupling in Subwavelength Nanogap Patch Antenna at the Single Resonator Level.
    Dayal G; Morichika I; Ashihara S
    J Phys Chem Lett; 2021 Apr; 12(12):3171-3175. PubMed ID: 33755489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angle-independent plasmonic substrates for multi-mode vibrational strong coupling with molecular thin films.
    Brawley ZT; Storm SD; Contreras Mora DA; Pelton M; Sheldon M
    J Chem Phys; 2021 Mar; 154(10):104305. PubMed ID: 33722049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polaritonic Hybrid-Epsilon-near-Zero Modes: Beating the Plasmonic Confinement vs Propagation-Length Trade-Off with Doped Cadmium Oxide Bilayers.
    Runnerstrom EL; Kelley KP; Folland TG; Nolen JR; Engheta N; Caldwell JD; Maria JP
    Nano Lett; 2019 Feb; 19(2):948-957. PubMed ID: 30582700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote near-field spectroscopy of vibrational strong coupling between organic molecules and phononic nanoresonators.
    Dolado I; Maciel-Escudero C; Nikulina E; Modin E; Calavalle F; Chen S; Bylinkin A; Alfaro-Mozaz FJ; Li J; Edgar JH; Casanova F; Vélez S; Hueso LE; Esteban R; Aizpurua J; Hillenbrand R
    Nat Commun; 2022 Nov; 13(1):6850. PubMed ID: 36369225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared Open Cavities for Strong Vibrational Coupling.
    Cohn B; Das K; Basu A; Chuntonov L
    J Phys Chem Lett; 2021 Jul; 12(29):7060-7066. PubMed ID: 34291931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Strong Coupling Effect between Metallic Split-Ring Resonators and Molecular Vibrations in Polymethyl Methacrylate.
    Liu Y; Maqbool E; Han Z
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibrational Strong Coupling with Surface Plasmons and the Presence of Surface Plasmon Stop Bands.
    Menghrajani KS; Nash GR; Barnes WL
    ACS Photonics; 2019 Aug; 6(8):2110-2116. PubMed ID: 31475218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting infrared energy transfer in 3D nanoporous gold antennas.
    Garoli D; Calandrini E; Bozzola A; Ortolani M; Cattarin S; Barison S; Toma A; De Angelis F
    Nanoscale; 2017 Jan; 9(2):915-922. PubMed ID: 28000833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From weak to strong coupling: quasi-BIC metasurfaces for mid-infrared light-matter interactions.
    Biswas SK; Adi W; Beisenova A; Rosas S; Arvelo ER; Yesilkoy F
    Nanophotonics; 2024 Jul; 13(16):2937-2949. PubMed ID: 39006137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoimaging and Control of Molecular Vibrations through Electromagnetically Induced Scattering Reaching the Strong Coupling Regime.
    Muller EA; Pollard B; Bechtel HA; Adato R; Etezadi D; Altug H; Raschke MB
    ACS Photonics; 2018 Sep; 5(9):3594-3600. PubMed ID: 30828589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Enhanced Infrared Absorption Using Single Conducting Polymer Antennas.
    Li X; Zhu S; Zhu G; Wang J; Ding Y; Du W; Wang T
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):14357-14363. PubMed ID: 38440977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong and weak couplings in molecular vibration-plasmon hybrid structures.
    Chang Y; Yao J; Wu X; Wu D; Liu X
    Opt Express; 2019 Jan; 27(2):1479-1487. PubMed ID: 30696212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Designed Broadband Absorber Based on ENZ Mode Incorporating Plasmonic Metasurfaces.
    Dang PT; Le KQ; Lee JH; Nguyen TK
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31590301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemistry under Vibrational Strong Coupling.
    Nagarajan K; Thomas A; Ebbesen TW
    J Am Chem Soc; 2021 Oct; 143(41):16877-16889. PubMed ID: 34609858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonant catalysis of thermally activated chemical reactions with vibrational polaritons.
    Campos-Gonzalez-Angulo JA; Ribeiro RF; Yuen-Zhou J
    Nat Commun; 2019 Oct; 10(1):4685. PubMed ID: 31615990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Giant mid-IR resonant coupling to molecular vibrations in sub-nm gaps of plasmonic multilayer metafilms.
    Arul R; Grys DB; Chikkaraddy R; Mueller NS; Xomalis A; Miele E; Euser TG; Baumberg JJ
    Light Sci Appl; 2022 Sep; 11(1):281. PubMed ID: 36151089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.