These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 36048747)
1. Correction: Periplasmic oxidized-protein repair during copper stress in E. coli: A focus on the metallochaperone CusF. PLOS Genetics Staff PLoS Genet; 2022 Sep; 18(9):e1010382. PubMed ID: 36048747 [TBL] [Abstract][Full Text] [Related]
2. Periplasmic oxidized-protein repair during copper stress in E. coli: A focus on the metallochaperone CusF. Vergnes A; Henry C; Grassini G; Loiseau L; El Hajj S; Denis Y; Galinier A; Vertommen D; Aussel L; Ezraty B PLoS Genet; 2022 Jul; 18(7):e1010180. PubMed ID: 35816552 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of ATPase-mediated Cu+ export and delivery to periplasmic chaperones: the interaction of Escherichia coli CopA and CusF. Padilla-Benavides T; George Thompson AM; McEvoy MM; Argüello JM J Biol Chem; 2014 Jul; 289(30):20492-501. PubMed ID: 24917681 [TBL] [Abstract][Full Text] [Related]
4. EPR spectroscopy identifies Met and Lys residues that are essential for the interaction between the CusB N-terminal domain and metallochaperone CusF. Meir A; Natan A; Moskovitz Y; Ruthstein S Metallomics; 2015 Jul; 7(7):1163-72. PubMed ID: 25940871 [TBL] [Abstract][Full Text] [Related]
5. Interactions between CusF and CusB identified by NMR spectroscopy and chemical cross-linking coupled to mass spectrometry. Mealman TD; Bagai I; Singh P; Goodlett DR; Rensing C; Zhou H; Wysocki VH; McEvoy MM Biochemistry; 2011 Apr; 50(13):2559-66. PubMed ID: 21323389 [TBL] [Abstract][Full Text] [Related]
6. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. Franke S; Grass G; Rensing C; Nies DH J Bacteriol; 2003 Jul; 185(13):3804-12. PubMed ID: 12813074 [TBL] [Abstract][Full Text] [Related]
7. Unusual Cu(I)/Ag(I) coordination of Escherichia coli CusF as revealed by atomic resolution crystallography and X-ray absorption spectroscopy. Loftin IR; Franke S; Blackburn NJ; McEvoy MM Protein Sci; 2007 Oct; 16(10):2287-93. PubMed ID: 17893365 [TBL] [Abstract][Full Text] [Related]
8. Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins. Chacón KN; Mealman TD; McEvoy MM; Blackburn NJ Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15373-8. PubMed ID: 25313055 [TBL] [Abstract][Full Text] [Related]
9. Periplasmic metal-resistance protein CusF exhibits high affinity and specificity for both CuI and AgI. Kittleson JT; Loftin IR; Hausrath AC; Engelhardt KP; Rensing C; McEvoy MM Biochemistry; 2006 Sep; 45(37):11096-102. PubMed ID: 16964970 [TBL] [Abstract][Full Text] [Related]
10. Models for the Metal Transfer Complex of the N-Terminal Region of CusB and CusF. Ucisik MN; Chakravorty DK; Merz KM Biochemistry; 2015 Jul; 54(27):4226-35. PubMed ID: 26079272 [TBL] [Abstract][Full Text] [Related]
11. A novel copper-binding fold for the periplasmic copper resistance protein CusF. Loftin IR; Franke S; Roberts SA; Weichsel A; Héroux A; Montfort WR; Rensing C; McEvoy MM Biochemistry; 2005 Aug; 44(31):10533-40. PubMed ID: 16060662 [TBL] [Abstract][Full Text] [Related]
12. Insight into the cation-π interaction at the metal binding site of the copper metallochaperone CusF. Chakravorty DK; Wang B; Ucisik MN; Merz KM J Am Chem Soc; 2011 Dec; 133(48):19330-3. PubMed ID: 22029374 [TBL] [Abstract][Full Text] [Related]
13. Trapping intermediates in metal transfer reactions of the CusCBAF export pump of Chacón KN; Perkins J; Mathe Z; Alwan K; Ho EN; Ucisik MN; Merz KM; Blackburn NJ Commun Biol; 2018; 1():192. PubMed ID: 30456313 [No Abstract] [Full Text] [Related]
14. Structural and metal binding characterization of the C-terminal metallochaperone domain of membrane fusion protein SilB from Cupriavidus metallidurans CH34. Bersch B; Derfoufi KM; De Angelis F; Auquier V; Ekendé EN; Mergeay M; Ruysschaert JM; Vandenbussche G Biochemistry; 2011 Mar; 50(12):2194-204. PubMed ID: 21299248 [TBL] [Abstract][Full Text] [Related]
15. N-terminal region of CusB is sufficient for metal binding and metal transfer with the metallochaperone CusF. Mealman TD; Zhou M; Affandi T; Chacón KN; Aranguren ME; Blackburn NJ; Wysocki VH; McEvoy MM Biochemistry; 2012 Aug; 51(34):6767-75. PubMed ID: 22812620 [TBL] [Abstract][Full Text] [Related]
16. Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF. Cantu-Bustos JE; Vargas-Cortez T; Morones-Ramirez JR; Balderas-Renteria I; Galbraith DW; McEvoy MM; Zarate X Protein Expr Purif; 2016 May; 121():61-5. PubMed ID: 26805756 [TBL] [Abstract][Full Text] [Related]
17. Metal export by CusCFBA, the periplasmic Cu(I)/Ag(I) transport system of Escherichia coli. Mealman TD; Blackburn NJ; McEvoy MM Curr Top Membr; 2012; 69():163-96. PubMed ID: 23046651 [TBL] [Abstract][Full Text] [Related]
18. Metal Ion Capture Mechanism of a Copper Metallochaperone. Chakravorty DK; Li P; Tran TT; Bayse CA; Merz KM Biochemistry; 2016 Jan; 55(3):501-9. PubMed ID: 26690586 [TBL] [Abstract][Full Text] [Related]
19. Engineering metal-binding sites of bacterial CusF to enhance Zn/Cd accumulation and resistance by subcellular targeting. Yu P; Yuan J; Zhang H; Deng X; Ma M; Zhang H J Hazard Mater; 2016 Jan; 302():275-285. PubMed ID: 26476315 [TBL] [Abstract][Full Text] [Related]