These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36048759)

  • 21. Alpha image reconstruction (AIR): a new iterative CT image reconstruction approach using voxel-wise alpha blending.
    Hofmann C; Sawall S; Knaup M; Kachelrieß M
    Med Phys; 2014 Jun; 41(6):061914. PubMed ID: 24877825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel simulation-driven reconstruction approach for x-ray computed tomography.
    Hsieh J
    Med Phys; 2022 Apr; 49(4):2245-2258. PubMed ID: 35102555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Truncation effect reduction for fast iterative reconstruction in cone-beam CT.
    Aootaphao S; Thongvigitmanee SS; Puttawibul P; Thajchayapong P
    BMC Med Imaging; 2022 Sep; 22(1):160. PubMed ID: 36064374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. AirNet: Fused analytical and iterative reconstruction with deep neural network regularization for sparse-data CT.
    Chen G; Hong X; Ding Q; Zhang Y; Chen H; Fu S; Zhao Y; Zhang X; Ji H; Wang G; Huang Q; Gao H
    Med Phys; 2020 Jul; 47(7):2916-2930. PubMed ID: 32274793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ADMM-based deep reconstruction for limited-angle CT.
    Wang J; Zeng L; Wang C; Guo Y
    Phys Med Biol; 2019 May; 64(11):115011. PubMed ID: 30999287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A CT Reconstruction Algorithm Based on L1/2 Regularization.
    Chen M; Mi D; He P; Deng L; Wei B
    Comput Math Methods Med; 2014; 2014():862910. PubMed ID: 24834109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temporal sparsity exploiting nonlocal regularization for 4D computed tomography reconstruction.
    Kazantsev D; Guo E; Kaestner A; Lionheart WR; Bent J; Withers PJ; Lee PD
    J Xray Sci Technol; 2016; 24(2):207-19. PubMed ID: 27002902
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-dose CT reconstruction with Noise2Noise network and testing-time fine-tuning.
    Wu D; Kim K; Li Q
    Med Phys; 2021 Dec; 48(12):7657-7672. PubMed ID: 34791655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the computational implementation of forward and back-projection operations for cone-beam computed tomography.
    Karimi D; Ward R
    Med Biol Eng Comput; 2016 Aug; 54(8):1193-204. PubMed ID: 26438389
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of the alpha image reconstruction - an iterative CT-image reconstruction with well-defined image quality metrics.
    Lebedev S; Sawall S; Knaup M; Kachelrieß M
    Z Med Phys; 2017 Sep; 27(3):180-192. PubMed ID: 28522170
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accelerated fast iterative shrinkage thresholding algorithms for sparsity-regularized cone-beam CT image reconstruction.
    Xu Q; Yang D; Tan J; Sawatzky A; Anastasio MA
    Med Phys; 2016 Apr; 43(4):1849. PubMed ID: 27036582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Noise-resolution tradeoffs in x-ray CT imaging: a comparison of penalized alternating minimization and filtered backprojection algorithms.
    Evans JD; Politte DG; Whiting BR; O'Sullivan JA; Williamson JF
    Med Phys; 2011 Mar; 38(3):1444-58. PubMed ID: 21520856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. LRR-CED: low-resolution reconstruction-aware convolutional encoder-decoder network for direct sparse-view CT image reconstruction.
    Kandarpa VSS; Perelli A; Bousse A; Visvikis D
    Phys Med Biol; 2022 Jul; 67(15):. PubMed ID: 35738249
    [No Abstract]   [Full Text] [Related]  

  • 34. An oblique projection modification technique (OPMT) for fast multispectral CT reconstruction.
    Zhao S; Pan H; Zhang W; Xia D; Zhao X
    Phys Med Biol; 2021 Mar; 66(6):065003. PubMed ID: 33498029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Information-theoretic discrepancy based iterative reconstructions (IDIR) for polychromatic x-ray tomography.
    Jang KE; Lee J; Sung Y; Lee S
    Med Phys; 2013 Sep; 40(9):091908. PubMed ID: 24007159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spectrum Estimation-Guided Iterative Reconstruction Algorithm for Dual Energy CT.
    Chang S; Li M; Yu H; Chen X; Deng S; Zhang P; Mou X
    IEEE Trans Med Imaging; 2020 Jan; 39(1):246-258. PubMed ID: 31251178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of the non-negativity constraint in model-based iterative reconstruction from CT data.
    Haase V; Hahn K; Schöndube H; Stierstorfer K; Maier A; Noo F
    Med Phys; 2019 Dec; 46(12):e835-e854. PubMed ID: 31811793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Technical Note: Iterative megavoltage CT (MVCT) reconstruction using block-matching 3D-transform (BM3D) regularization.
    Lyu Q; Yang C; Gao H; Xue Y; O'Connor D; Niu T; Sheng K
    Med Phys; 2018 Jun; 45(6):2603-2610. PubMed ID: 29663467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TICMR: Total Image Constrained Material Reconstruction via Nonlocal Total Variation Regularization for Spectral CT.
    Liu J; Ding H; Molloi S; Zhang X; Gao H
    IEEE Trans Med Imaging; 2016 Dec; 35(12):2578-2586. PubMed ID: 27392346
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of adaptive statistical iterative reconstruction algorithm for dose reduction in CT: A pediatric oncology perspective.
    Brady SL; Yee BS; Kaufman RA
    Med Phys; 2012 Sep; 39(9):5520-31. PubMed ID: 22957619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.