These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36048759)

  • 41. Task-driven optimization of CT tube current modulation and regularization in model-based iterative reconstruction.
    Gang GJ; Siewerdsen JH; Webster Stayman J
    Phys Med Biol; 2017 Jun; 62(12):4777-4797. PubMed ID: 28362638
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deep iterative reconstruction estimation (DIRE): approximate iterative reconstruction estimation for low dose CT imaging.
    Liu J; Zhang Y; Zhao Q; Lv T; Wu W; Cai N; Quan G; Yang W; Chen Y; Luo L; Shu H; Coatrieux JL
    Phys Med Biol; 2019 Jul; 64(13):135007. PubMed ID: 30978718
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Joint regularization-based image reconstruction by combining data-driven tight frame and total variation for low-dose computed tomography.
    Li J; Zhang W; Cai A; Wang L; Liang N; Zheng Z; Li L; Yan B
    J Xray Sci Technol; 2018; 26(5):785-803. PubMed ID: 29991153
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dual energy CT with one full scan and a second sparse-view scan using structure preserving iterative reconstruction (SPIR).
    Wang T; Zhu L
    Phys Med Biol; 2016 Sep; 61(18):6684-6706. PubMed ID: 27552793
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A comparative study based on image quality and clinical task performance for CT reconstruction algorithms in radiotherapy.
    Li H; Dolly S; Chen HC; Anastasio MA; Low DA; Li HH; Michalski JM; Thorstad WL; Gay H; Mutic S
    J Appl Clin Med Phys; 2016 Jul; 17(4):377-390. PubMed ID: 27455472
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Relaxed Linearized Algorithms for Faster X-Ray CT Image Reconstruction.
    Nien H; Fessler JA
    IEEE Trans Med Imaging; 2016 Apr; 35(4):1090-8. PubMed ID: 26685227
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quadratic regularization design for 2-D CT.
    Shi HR; Fessler JA
    IEEE Trans Med Imaging; 2009 May; 28(5):645-56. PubMed ID: 19272993
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Material decomposition for simulated dual-energy breast computed tomography via hybrid optimization method.
    Komolafe TE; Du Q; Zhang Y; Wu Z; Zhang C; Li M; Zheng J; Yang X
    J Xray Sci Technol; 2020; 28(6):1037-1054. PubMed ID: 33044222
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Expectation maximization (EM) algorithms using polar symmetries for computed tomography (CT) image reconstruction.
    Rodríguez-Alvarez MJ; Soriano A; Iborra A; Sánchez F; González AJ; Conde P; Hernández L; Moliner L; Orero A; Vidal LF; Benlloch JM
    Comput Biol Med; 2013 Sep; 43(8):1053-61. PubMed ID: 23706690
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Suppression of intensity transition artifacts in statistical x-ray computer tomography reconstruction through radon inversion initialization.
    Zbijewski W; Beekman FJ
    Med Phys; 2004 Jan; 31(1):62-9. PubMed ID: 14761022
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-quality initial image-guided 4D CBCT reconstruction.
    Zhi S; Kachelrieß M; Mou X
    Med Phys; 2020 Jun; 47(5):2099-2115. PubMed ID: 32017128
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Framelet tensor sparsity with block matching for spectral CT reconstruction.
    Yu X; Cai A; Wang L; Zheng Z; Wang Y; Wang Z; Li L; Yan B
    Med Phys; 2022 Apr; 49(4):2486-2501. PubMed ID: 35142376
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Low dose reconstruction algorithm for differential phase contrast imaging.
    Wang Z; Huang Z; Zhang L; Chen Z; Kang K; Yin H; Wang Z; Marco S
    J Xray Sci Technol; 2011; 19(3):403-15. PubMed ID: 21876288
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study.
    Grosser OS; Kupitz D; Ruf J; Czuczwara D; Steffen IG; Furth C; Thormann M; Loewenthal D; Ricke J; Amthauer H
    PLoS One; 2015; 10(9):e0138658. PubMed ID: 26390216
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of five one-step reconstruction algorithms for spectral CT.
    Mory C; Sixou B; Si-Mohamed S; Boussel L; Rit S
    Phys Med Biol; 2018 Nov; 63(23):235001. PubMed ID: 30465541
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A compressed sensing-based iterative algorithm for CT reconstruction and its possible application to phase contrast imaging.
    Li X; Luo S
    Biomed Eng Online; 2011 Aug; 10():73. PubMed ID: 21849088
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.
    Kang E; Min J; Ye JC
    Med Phys; 2017 Oct; 44(10):e360-e375. PubMed ID: 29027238
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The optimal monochromatic spectral computed tomographic imaging plus adaptive statistical iterative reconstruction algorithm can improve the superior mesenteric vessel image quality.
    Yin XP; Zuo ZW; Xu YJ; Wang JN; Liu HJ; Liang GL; Gao BL
    Eur J Radiol; 2017 Apr; 89():47-53. PubMed ID: 28267548
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigation of statistical iterative reconstruction for dedicated breast CT.
    Makeev A; Glick SJ
    Med Phys; 2013 Aug; 40(8):081904. PubMed ID: 23927318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.