These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36048829)

  • 1. Diverse ecological functions and the convergent evolution of grass awns.
    Petersen KB; Kellogg EA
    Am J Bot; 2022 Sep; 109(9):1331-1345. PubMed ID: 36048829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecology and evolution of the diaspore "burial syndrome".
    Humphreys AM; Antonelli A; Pirie MD; Linder HP
    Evolution; 2011 Apr; 65(4):1163-80. PubMed ID: 21062276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation.
    Linder HP; Lehmann CER; Archibald S; Osborne CP; Richardson DM
    Biol Rev Camb Philos Soc; 2018 May; 93(2):1125-1144. PubMed ID: 29230921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Awn length variation and its effect on dispersal unit burial of Trachypogon spicatus (Poaceae).
    Johnson EE; Baruch Z
    Rev Biol Trop; 2014 Mar; 62(1):321-6. PubMed ID: 24912361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyphyly of Arundinoideae (Poaceae) and evolution of the twisted geniculate lemma awn.
    Teisher JK; McKain MR; Schaal BA; Kellogg EA
    Ann Bot; 2017 Nov; 120(5):725-738. PubMed ID: 28645142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unveiling the Actual Functions of Awns in Grasses: From Yield Potential to Quality Traits.
    Ntakirutimana F; Xie W
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33066600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological and Genetic Mechanisms Underlying Awn Development in Monocotyledonous Grasses.
    Ntakirutimana F; Xie W
    Genes (Basel); 2019 Jul; 10(8):. PubMed ID: 31366144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repetitive hygroscopic snapping movements in awns of wild oats.
    Lindtner T; Uzan AY; Eder M; Bar-On B; Elbaum R
    Acta Biomater; 2021 Nov; 135():483-492. PubMed ID: 34506974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A natural adaptive syndrome as a model for the origins of cereal agriculture.
    Wood D; Lenné JM
    Proc Biol Sci; 2018 Mar; 285(1875):. PubMed ID: 29563270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogeny and anatomy of Bouteloua (Poaceae: Chloridoideae) species display a basipetal branch formation and a novel modified leaf structure in grasses.
    Cuellar-Garrido LF; Ruiz-Sanchez E; Vargas-Ponce O; Whipple CJ
    Ann Bot; 2022 Nov; 130(5):737-747. PubMed ID: 35961673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential Effects of Awn Length Variation on Seed Yield and Components, Seed Dispersal and Germination Performance in Siberian Wildrye (
    Ntakirutimana F; Xiao B; Xie W; Zhang J; Zhang Z; Wang N; Yan J
    Plants (Basel); 2019 Dec; 8(12):. PubMed ID: 31805733
    [No Abstract]   [Full Text] [Related]  

  • 12. Ultrasonographic findings and outcomes of dogs with suspected migrating intrathoracic grass awns: 43 cases (2010-2013).
    Caivano D; Birettoni F; Rishniw M; Bufalari A; De Monte V; Proni A; Giorgi ME; Porciello F
    J Am Vet Med Assoc; 2016 Feb; 248(4):413-21. PubMed ID: 26829274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-burial mechanics of hygroscopically responsive awns.
    Jung W; Kim W; Kim HY
    Integr Comp Biol; 2014 Dec; 54(6):1034-42. PubMed ID: 24760793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of QTLs linked to awn length and their relationships with chloroplasts under control and saline environments in bread wheat.
    Masoudi B; Mardi M; Hervan EM; Bihamta MR; Naghavi MR; Nakhoda B; Bakhshi B; Ahmadi M; Tabatabaei MT; Firouzabadi MHD
    Genes Genomics; 2019 Feb; 41(2):223-231. PubMed ID: 30378005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A SHORT INTERNODES (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley.
    Yuo T; Yamashita Y; Kanamori H; Matsumoto T; Lundqvist U; Sato K; Ichii M; Jobling SA; Taketa S
    J Exp Bot; 2012 Sep; 63(14):5223-32. PubMed ID: 22791834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonographic features of grass awn migration in the dog.
    Gnudi G; Volta A; Bonazzi M; Gazzola M; Bertoni G
    Vet Radiol Ultrasound; 2005; 46(5):423-6. PubMed ID: 16250402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversification of C(4) grasses (Poaceae) does not coincide with their ecological dominance.
    Bouchenak-Khelladi Y; Slingsby JA; Verboom GA; Bond WJ
    Am J Bot; 2014 Feb; 101(2):300-7. PubMed ID: 24509796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonographic features of grass awns in the urinary bladder.
    Cherbinsky O; Westropp J; Tinga S; Jones B; Pollard R
    Vet Radiol Ultrasound; 2010; 51(4):462-5. PubMed ID: 20806881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping and Characterization of QTLs for Awn Morphology Using Crosses between "Double-Awn" Wheat 4045 and Awnless Wheat Zhiluowumai.
    Liu T; Shi X; Wang J; Song J; Xiao E; Wang Y; Gao X; Nan W; Wang Z
    Plants (Basel); 2021 Nov; 10(12):. PubMed ID: 34961059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Botanical ratchets.
    Kulić IM; Mani M; Mohrbach H; Thaokar R; Mahadevan L
    Proc Biol Sci; 2009 Jun; 276(1665):2243-7. PubMed ID: 19324799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.