BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36048876)

  • 1. In planta transcriptomics reveals conflicts between pattern-triggered immunity and the AlgU sigma factor regulon.
    Wang H; Smith A; Lovelace A; Kvitko BH
    PLoS One; 2022; 17(9):e0274009. PubMed ID: 36048876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AlgU Controls Expression of Virulence Genes in Pseudomonas syringae pv. tomato DC3000.
    Markel E; Stodghill P; Bao Z; Myers CR; Swingle B
    J Bacteriol; 2016 Sep; 198(17):2330-44. PubMed ID: 27325679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring Pseudomonas syringae pv. tomato biofilm-like aggregate formation in susceptible and PTI-responding Arabidopsis thaliana.
    Xiao WN; Nunn GM; Fufeng AB; Belu N; Brookman RK; Halim A; Krysmanski EC; Cameron RK
    Mol Plant Pathol; 2024 Jan; 25(1):e13403. PubMed ID: 37988240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca
    Fishman MR; Zhang J; Bronstein PA; Stodghill P; Filiatrault MJ
    J Bacteriol; 2018 Mar; 200(5):. PubMed ID: 29263098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of the non-effector members of the HrpL regulon, iaaL and matE, to the virulence of Pseudomonas syringae pv. tomato DC3000 in tomato plants.
    Castillo-Lizardo MG; Aragón IM; Carvajal V; Matas IM; Pérez-Bueno ML; Gallegos MT; Barón M; Ramos C
    BMC Microbiol; 2015 Aug; 15():165. PubMed ID: 26285820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional analysis of the global regulatory networks active in Pseudomonas syringae during leaf colonization.
    Yu X; Lund SP; Greenwald JW; Records AH; Scott RA; Nettleton D; Lindow SE; Gross DC; Beattie GA
    mBio; 2014 Sep; 5(5):e01683-14. PubMed ID: 25182327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudomonas syringae AlgU Downregulates Flagellin Gene Expression, Helping Evade Plant Immunity.
    Bao Z; Wei HL; Ma X; Swingle B
    J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31740494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pattern-Triggered Immunity Alters the Transcriptional Regulation of Virulence-Associated Genes and Induces the Sulfur Starvation Response in Pseudomonas syringae pv. tomato DC3000.
    Lovelace AH; Smith A; Kvitko BH
    Mol Plant Microbe Interact; 2018 Jul; 31(7):750-765. PubMed ID: 29460676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An AlgU-Regulated Antisense Transcript Encoded within the Pseudomonas syringae
    Markel E; Dalenberg H; Monteil CL; Vinatzer BA; Swingle B
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29311280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant immunity directly or indirectly restricts the injection of type III effectors by the Pseudomonas syringae type III secretion system.
    Crabill E; Joe A; Block A; van Rooyen JM; Alfano JR
    Plant Physiol; 2010 Sep; 154(1):233-44. PubMed ID: 20624999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AlgU, a Conserved Sigma Factor Regulating Abiotic Stress Tolerance and Promoting Virulence in
    Wang H; Yang Z; Swingle B; Kvitko BH
    Mol Plant Microbe Interact; 2021 Apr; 34(4):326-336. PubMed ID: 33264045
    [No Abstract]   [Full Text] [Related]  

  • 12. High levels of cyclic-di-GMP in plant-associated Pseudomonas correlate with evasion of plant immunity.
    Pfeilmeier S; Saur IM; Rathjen JP; Zipfel C; Malone JG
    Mol Plant Pathol; 2016 May; 17(4):521-31. PubMed ID: 26202381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the PvdS-regulated promoter motif in Pseudomonas syringae pv. tomato DC3000 reveals regulon members and insights regarding PvdS function in other pseudomonads.
    Swingle B; Thete D; Moll M; Myers CR; Schneider DJ; Cartinhour S
    Mol Microbiol; 2008 May; 68(4):871-89. PubMed ID: 18363796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of RT-qPCR Approaches to Monitor Pseudomonas syringae Gene Expression During Infection and Exposure to Pattern-Triggered Immunity.
    Smith A; Lovelace AH; Kvitko BH
    Mol Plant Microbe Interact; 2018 Apr; 31(4):410-419. PubMed ID: 29436925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome landscape of a bacterial pathogen under plant immunity.
    Nobori T; Velásquez AC; Wu J; Kvitko BH; Kremer JM; Wang Y; He SY; Tsuda K
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):E3055-E3064. PubMed ID: 29531038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HopA1 Effector from
    Dahale SK; Ghosh D; Ingole KD; Chugani A; Kim SH; Bhattacharjee S
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299060
    [No Abstract]   [Full Text] [Related]  

  • 17. The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity.
    Guo M; Tian F; Wamboldt Y; Alfano JR
    Mol Plant Microbe Interact; 2009 Sep; 22(9):1069-80. PubMed ID: 19656042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wound-induced polypeptides improve resistance against Pseudomonas syringae pv. tomato DC3000 in Arabidopsis.
    Yu L; Wang Y; Liu Y; Li N; Yan J; Luo L
    Biochem Biophys Res Commun; 2018 Sep; 504(1):149-156. PubMed ID: 30172369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Phytophthora sojae effector PsCRN63 forms homo-/hetero-dimers to suppress plant immunity via an inverted association manner.
    Li Q; Zhang M; Shen D; Liu T; Chen Y; Zhou JM; Dou D
    Sci Rep; 2016 May; 6():26951. PubMed ID: 27243217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Azotobacter vinelandii AlgU regulon during vegetative growth and encysting conditions: A proteomic approach.
    Chowdhury-Paul S; Martínez-Ortíz IC; Pando-Robles V; Moreno S; Espín G; Merino E; Núñez C
    PLoS One; 2023; 18(11):e0286440. PubMed ID: 37967103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.