These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 36049270)

  • 1. Sulfuric acid leaching of ball-milling activated FePO
    Wang XJ; Zheng SL; Zhang Y; Zhang Y; Qiao S; Long ZQ; Zhao B; Li ZF
    Waste Manag; 2022 Nov; 153():31-40. PubMed ID: 36049270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaching of electrodic powders from lithium ion batteries: Optimization of operating conditions and effect of physical pretreatment for waste fraction retrieval.
    Pagnanelli F; Moscardini E; Altimari P; Abo Atia T; Toro L
    Waste Manag; 2017 Feb; 60():706-715. PubMed ID: 27940079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environment-friendly, efficient process for mechanical recovery of waste lithium iron phosphate batteries.
    Bai Y; Zhu H; Zu L; Zhang Y; Bi H
    Waste Manag Res; 2023 Oct; 41(10):1549-1558. PubMed ID: 37070218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective recovery of lithium and iron phosphate/carbon from spent lithium iron phosphate cathode material by anionic membrane slurry electrolysis.
    Li Z; Liu D; Xiong J; He L; Zhao Z; Wang D
    Waste Manag; 2020 Apr; 107():1-8. PubMed ID: 32248067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective leaching process for efficient and rapid recycling of spent lithium iron phosphate batteries.
    Xiong Y; Guo Z; Mei T; Han Y; Wang Y; Xiong X; Tang Y; Wang X
    Waste Manag Res; 2023 Nov; 41(11):1613-1621. PubMed ID: 37102334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrometallurgical recovery of spent cobalt-based lithium-ion battery cathodes using ethanol as the reducing agent.
    Zhao J; Zhang B; Xie H; Qu J; Qu X; Xing P; Yin H
    Environ Res; 2020 Feb; 181():108803. PubMed ID: 31761334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-efficiency leaching process for selective leaching of lithium from spent lithium iron phosphate.
    Li G; Chen Y; Wu M; Xu Y; Li X; Tian M
    Waste Manag; 2024 Dec; 190():141-148. PubMed ID: 39317059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects.
    Meshram P; Pandey BD; Mankhand TR
    Waste Manag; 2015 Nov; 45():306-13. PubMed ID: 26087645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Wu Z
    Waste Manag Res; 2019 Dec; 37(12):1217-1228. PubMed ID: 31486742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanochemically assisted persulfate activation for the facile recovery of metals from spent lithium ion batteries.
    Liang Z; Peng G; Hu J; Hou H; Cai C; Yang X; Chen S; Liu L; Liang S; Xiao K; Yuan S; Zhou S; Yang J
    Waste Manag; 2022 Aug; 150():290-300. PubMed ID: 35872333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferrioxalate photolysis-assisted green recovery of valuable resources from spent lithium iron phosphate batteries.
    Hua Y; Zhang Z
    Waste Manag; 2024 Jun; 183():199-208. PubMed ID: 38761484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media.
    Chen X; Zhou T
    Waste Manag Res; 2014 Nov; 32(11):1083-93. PubMed ID: 25378255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mechanochemical method for one-step leaching of metals from spent LIBs.
    Zhang S; Zhang C; Zhang X; Ma E
    Waste Manag; 2023 Apr; 161():245-253. PubMed ID: 36905812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaching NCM cathode materials of spent lithium-ion batteries with phosphate acid-based deep eutectic solvent.
    He X; Wen Y; Wang X; Cui Y; Li L; Ma H
    Waste Manag; 2023 Feb; 157():8-16. PubMed ID: 36512926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective recovery of Li and FePO
    Kumar J; Shen X; Li B; Liu H; Zhao J
    Waste Manag; 2020 Jul; 113():32-40. PubMed ID: 32505109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subcritical Water Extraction of Valuable Metals from Spent Lithium-Ion Batteries.
    Lie J; Tanda S; Liu JC
    Molecules; 2020 May; 25(9):. PubMed ID: 32384592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.
    Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S
    Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Closed-loop recycling of lithium iron phosphate cathodic powders via citric acid leaching.
    Bruno M; Francia C; Fiore S
    Environ Sci Pollut Res Int; 2024 Mar; ():. PubMed ID: 38468005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.
    Zheng X; Gao W; Zhang X; He M; Lin X; Cao H; Zhang Y; Sun Z
    Waste Manag; 2017 Feb; 60():680-688. PubMed ID: 27993441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustainable recovery of valuable metals from spent lithium-ion batteries using DL-malic acid: Leaching and kinetics aspect.
    Sun C; Xu L; Chen X; Qiu T; Zhou T
    Waste Manag Res; 2018 Feb; 36(2):113-120. PubMed ID: 29212425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.