These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 36049286)
1. Fast chlorophyll a fluorescence induction (OJIP) phenotyping of chlorophyll-deficient wheat suggests that an enlarged acceptor pool size of Photosystem I helps compensate for a deregulated photosynthetic electron flow. Ferroni L; Živčak M; Kovar M; Colpo A; Pancaldi S; Allakhverdiev SI; Brestič M J Photochem Photobiol B; 2022 Sep; 234():112549. PubMed ID: 36049286 [TBL] [Abstract][Full Text] [Related]
2. Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. Brestic M; Zivcak M; Kunderlikova K; Sytar O; Shao H; Kalaji HM; Allakhverdiev SI Photosynth Res; 2015 Aug; 125(1-2):151-66. PubMed ID: 25648638 [TBL] [Abstract][Full Text] [Related]
3. Effect of photosystem I inactivation on chlorophyll a fluorescence induction in wheat leaves: Does activity of photosystem I play any role in OJIP rise? Zivcak M; Brestic M; Kunderlikova K; Olsovska K; Allakhverdiev SI J Photochem Photobiol B; 2015 Nov; 152(Pt B):318-24. PubMed ID: 26388470 [TBL] [Abstract][Full Text] [Related]
4. Elevated air temperature damage to photosynthetic apparatus alleviated by enhanced cyclic electron flow around photosystem I in tobacco leaves. Yanhui C; Hongrui W; Beining Z; Shixing G; Zihan W; Yue W; Huihui Z; Guangyu S Ecotoxicol Environ Saf; 2020 Nov; 204():111136. PubMed ID: 32798755 [TBL] [Abstract][Full Text] [Related]
5. Analyzing both the fast and the slow phases of chlorophyll a fluorescence and P700 absorbance changes in dark-adapted and preilluminated pea leaves using a Thylakoid Membrane model. Belyaeva NE; Bulychev AA; Riznichenko GY; Rubin AB Photosynth Res; 2019 Apr; 140(1):1-19. PubMed ID: 30810971 [TBL] [Abstract][Full Text] [Related]
6. Photosystem activity and state transitions of the photosynthetic apparatus in cyanobacterium Synechocystis PCC 6803 mutants with different redox state of the plastoquinone pool. Bolychevtseva YV; Kuzminov FI; Elanskaya IV; Gorbunov MY; Karapetyan NV Biochemistry (Mosc); 2015 Jan; 80(1):50-60. PubMed ID: 25754039 [TBL] [Abstract][Full Text] [Related]
7. Roles of the cyclic electron flow around PSI (CEF-PSI) and O₂-dependent alternative pathways in regulation of the photosynthetic electron flow in short-term fluctuating light in Arabidopsis thaliana. Kono M; Noguchi K; Terashima I Plant Cell Physiol; 2014 May; 55(5):990-1004. PubMed ID: 24553846 [TBL] [Abstract][Full Text] [Related]
8. Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Zivcak M; Brestic M; Balatova Z; Drevenakova P; Olsovska K; Kalaji HM; Yang X; Allakhverdiev SI Photosynth Res; 2013 Nov; 117(1-3):529-46. PubMed ID: 23860828 [TBL] [Abstract][Full Text] [Related]
9. Multiple in vivo Effects of Cadmium on Photosynthetic Electron Transport in Pea Plants. Todorenko D; Volgusheva A; Timofeev N; Kovalenko I; Matorin D; Antal T Photochem Photobiol; 2021 Nov; 97(6):1516-1526. PubMed ID: 34129699 [TBL] [Abstract][Full Text] [Related]
10. Competition between linear and cyclic electron flow in plants deficient in Photosystem I. Hald S; Pribil M; Leister D; Gallois P; Johnson GN Biochim Biophys Acta; 2008 Sep; 1777(9):1173-83. PubMed ID: 18501696 [TBL] [Abstract][Full Text] [Related]
11. Phenotyping of isogenic chlorophyll-less bread and durum wheat mutant lines in relation to photoprotection and photosynthetic capacity. Zivcak M; Brestic M; Botyanszka L; Chen YE; Allakhverdiev SI Photosynth Res; 2019 Mar; 139(1-3):239-251. PubMed ID: 30019176 [TBL] [Abstract][Full Text] [Related]
12. Deficiency in flavodiiron protein Flv3 promotes cyclic electron flow and state transition under high light in the cyanobacterium Synechocystis sp. PCC 6803. Elanskaya IV; Bulychev AA; Lukashev EP; Muronets EM Biochim Biophys Acta Bioenerg; 2021 Jan; 1862(1):148318. PubMed ID: 32979345 [TBL] [Abstract][Full Text] [Related]
13. Light intensity dependent photosynthetic electron transport in eelgrass (Zostera marina L.). Yang XQ; Zhang QS; Zhang D; Sheng ZT Plant Physiol Biochem; 2017 Apr; 113():168-176. PubMed ID: 28236752 [TBL] [Abstract][Full Text] [Related]
14. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Kalaji HM; Oukarroum A; Alexandrov V; Kouzmanova M; Brestic M; Zivcak M; Samborska IA; Cetner MD; Allakhverdiev SI; Goltsev V Plant Physiol Biochem; 2014 Aug; 81():16-25. PubMed ID: 24811616 [TBL] [Abstract][Full Text] [Related]
15. Dissection of photosynthetic electron transport process in sweet sorghum under heat stress. Yan K; Chen P; Shao H; Shao C; Zhao S; Brestic M PLoS One; 2013; 8(5):e62100. PubMed ID: 23717388 [TBL] [Abstract][Full Text] [Related]
16. Partially Dissecting Electron Fluxes in Both Photosystems in Spinach Leaf Disks during Photosynthetic Induction. Zhang MM; Fan DY; Murakami K; Badger MR; Sun GY; Chow WS Plant Cell Physiol; 2019 Oct; 60(10):2206-2219. PubMed ID: 31271439 [TBL] [Abstract][Full Text] [Related]
17. Analysis of fast chlorophyll fluorescence rise (O-K-J-I-P) curves in green fruits indicates electron flow limitations at the donor side of PSII and the acceptor sides of both photosystems. Kalachanis D; Manetas Y Physiol Plant; 2010 Jul; 139(3):313-23. PubMed ID: 20149129 [TBL] [Abstract][Full Text] [Related]
18. Natural variation in photosynthetic electron transport of wheat flag leaves in response to dark-induced senescence. Yang C; Zhang Z; Yuan Y; Zhang D; Jin H; Li Y; Du S; Li X; Fang B; Wei F; Yan G J Photochem Photobiol B; 2024 Oct; 259():113018. PubMed ID: 39182402 [TBL] [Abstract][Full Text] [Related]
19. How does iron deficiency disrupt the electron flow in photosystem I of lettuce leaves? Msilini N; Essemine J; Zaghdoudi M; Harnois J; Lachaâl M; Ouerghi Z; Carpentier R J Plant Physiol; 2013 Nov; 170(16):1400-6. PubMed ID: 23747063 [TBL] [Abstract][Full Text] [Related]
20. Photosynthesis under fluctuating light in the CAM plant Vanilla planifolia. Wang H; Wang XQ; Zeng ZL; Yu H; Huang W Plant Sci; 2022 Apr; 317():111207. PubMed ID: 35193751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]