These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36049363)

  • 1. Accuracy of MRI derived cerebral aqueduct flow parameters in the diagnosis of idiopathic normal pressure hydrocephalus.
    Chen CH; Cheng YC; Huang CY; Chen HC; Chen WH; Chai JW
    J Clin Neurosci; 2022 Nov; 105():9-15. PubMed ID: 36049363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebrospinal fluid and blood flow patterns in idiopathic normal pressure hydrocephalus.
    Qvarlander S; Ambarki K; Wåhlin A; Jacobsson J; Birgander R; Malm J; Eklund A
    Acta Neurol Scand; 2017 May; 135(5):576-584. PubMed ID: 27388230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-contrast magnetic resonance imaging reveals net retrograde aqueductal flow in idiopathic normal pressure hydrocephalus.
    Ringstad G; Emblem KE; Eide PK
    J Neurosurg; 2016 Jun; 124(6):1850-7. PubMed ID: 26636385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebrospinal fluid volumetric net flow rate and direction in idiopathic normal pressure hydrocephalus.
    Lindstrøm EK; Ringstad G; Mardal KA; Eide PK
    Neuroimage Clin; 2018; 20():731-741. PubMed ID: 30238917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical effects of hyper-dynamic cerebrospinal fluid flow through the cerebral aqueduct in idiopathic normal pressure hydrocephalus patients.
    Maeda S; Otani T; Yamada S; Watanabe Y; Ilik SY; Wada S
    J Biomech; 2023 Jul; 156():111671. PubMed ID: 37327645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebrospinal fluid dynamics in idiopathic normal pressure hydrocephalus on four-dimensional flow imaging.
    Yamada S; Ishikawa M; Ito H; Yamamoto K; Yamaguchi M; Oshima M; Nozaki K
    Eur Radiol; 2020 Aug; 30(8):4454-4465. PubMed ID: 32246220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperdynamic CSF motion profiles found in idiopathic normal pressure hydrocephalus and Alzheimer's disease assessed by fluid mechanics derived from magnetic resonance images.
    Takizawa K; Matsumae M; Hayashi N; Hirayama A; Yatsushiro S; Kuroda K
    Fluids Barriers CNS; 2017 Oct; 14(1):29. PubMed ID: 29047355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversed aqueductal cerebrospinal fluid net flow in idiopathic normal pressure hydrocephalus.
    Yin LK; Zheng JJ; Zhao L; Hao XZ; Zhang XX; Tian JQ; Zheng K; Yang YM
    Acta Neurol Scand; 2017 Nov; 136(5):434-439. PubMed ID: 28247411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opposing CSF hydrodynamic trends found in the cerebral aqueduct and prepontine cistern following shunt treatment in patients with normal pressure hydrocephalus.
    Hamilton RB; Scalzo F; Baldwin K; Dorn A; Vespa P; Hu X; Bergsneider M
    Fluids Barriers CNS; 2019 Jan; 16(1):2. PubMed ID: 30665428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Idiopathic Normal Pressure Hydrocephalus and Elderly Acquired Hydrocephalus: Evaluation With Cerebrospinal Fluid Flow and Ventricular Volume Parameters.
    He WJ; Zhou X; Long J; Xu QZ; Huang XJ; Jiang J; Xia J; Yang G
    Front Aging Neurosci; 2020; 12():584842. PubMed ID: 33192478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between intracranial pressure and phase contrast cine MRI derived measures of intracranial pulsations in idiopathic normal pressure hydrocephalus.
    Jaeger M; Khoo AK; Conforti DA; Cuganesan R
    J Clin Neurosci; 2016 Nov; 33():169-172. PubMed ID: 27519145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Idiopathic normal-pressure hydrocephalus. Flow measurement of cerebrospinal fluid using phase contrast MRI and its diagnostics importance].
    Al-Zain FT; Rademacher G; Lemcke J; Mutze J; Meier U
    Nervenarzt; 2007 Feb; 78(2):181-7. PubMed ID: 17225144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using deep learning convolutional neural networks to automatically perform cerebral aqueduct CSF flow analysis.
    Tsou CH; Cheng YC; Huang CY; Chen JH; Chen WH; Chai JW; Chen CC
    J Clin Neurosci; 2021 Aug; 90():60-67. PubMed ID: 34275582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The efficiency of PC-MRI in diagnosis of normal pressure hydrocephalus and prediction of shunt response.
    Algin O; Hakyemez B; Parlak M
    Acad Radiol; 2010 Feb; 17(2):181-7. PubMed ID: 19910214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Change in average peak cerebrospinal fluid velocity at the cerebral aqueduct, before and after lumbar CSF tapping by the use of phase contrast MRI, and its effect on gait improvement in patients with normal pressure hydrocephalus.
    Gokul UR; Ramakrishnan KG
    Neurol India; 2018; 66(5):1407-1412. PubMed ID: 30233015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative assessment of cerebrospinal fluid flow and volume in enlargement of the subarachnoid spaces of infancy using MRI.
    Ho CY; Sankar M; Persohn S; Kralik SF; Graner B; Territo PR
    Pediatr Radiol; 2023 Aug; 53(9):1919-1926. PubMed ID: 37100991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting phase-contrast MRI performance in idiopathic normal pressure hydrocephalus diagnostics by means of machine learning approach.
    Vlasák A; Gerla V; Skalický P; Mládek A; Sedlák V; Vrána J; Whitley H; Lhotská L; Beneš V; Beneš V; Bradáč O
    Neurosurg Focus; 2022 Apr; 52(4):E6. PubMed ID: 35364583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-Contrast MRI CSF Flow Measurements for the Diagnosis of Normal-Pressure Hydrocephalus: Observer Agreement of Velocity Versus Volume Parameters.
    Tawfik AM; Elsorogy L; Abdelghaffar R; Naby AA; Elmenshawi I
    AJR Am J Roentgenol; 2017 Apr; 208(4):838-843. PubMed ID: 28140607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-invasive assessment of cerebrospinal fluid flow dynamics using phase-contrast magnetic resonance imaging in communicating hydrocephalus.
    Liu S; Zhang Y; Jiang T; Liu J; Jiang L; Wu T
    J Clin Neurosci; 2021 Nov; 93():116-121. PubMed ID: 34656234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of Oscillatory Shear Stress from Reciprocating CSF Motion on 4D Flow Imaging.
    Yamada S; Ito H; Ishikawa M; Yamamoto K; Yamaguchi M; Oshima M; Nozaki K
    AJNR Am J Neuroradiol; 2021 Mar; 42(3):479-486. PubMed ID: 33478942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.