These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36049386)

  • 1. Investigation on the sensitivity of indentation devices for detection of fatigue loading induced damage in bovine cortical bone.
    Uniyal P; Sharma A; Kumar N
    J Biomech; 2022 Oct; 143():111274. PubMed ID: 36049386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tensile and compressive strain evolutions of bovine compact bone under four-point bending fatigue loading.
    Meng X; Qin Q; Qu C
    J Mech Behav Biomed Mater; 2021 Nov; 123():104774. PubMed ID: 34404024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element simulation of Reference Point Indentation on bone.
    Idkaidek A; Agarwal V; Jasiuk I
    J Mech Behav Biomed Mater; 2017 Jan; 65():574-583. PubMed ID: 27721174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in sensitivity to microstructure between cyclic- and impact-based microindentation of human cortical bone.
    Uppuganti S; Granke M; Manhard MK; Does MD; Perrien DS; Lee DH; Nyman JS
    J Orthop Res; 2017 Jul; 35(7):1442-1452. PubMed ID: 27513922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compact bone fatigue damage: a microscopic examination.
    Carter DR; Hayes WC
    Clin Orthop Relat Res; 1977; (127):265-74. PubMed ID: 912990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of fatigue induced damage on the longitudinal fracture resistance of cortical bone.
    Fletcher L; Codrington J; Parkinson I
    J Mater Sci Mater Med; 2014 Jul; 25(7):1661-70. PubMed ID: 24715332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructural and compositional contributions towards the mechanical behavior of aging human bone measured by cyclic and impact reference point indentation.
    Abraham AC; Agarwalla A; Yadavalli A; Liu JY; Tang SY
    Bone; 2016 Jun; 87():37-43. PubMed ID: 27021150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of cyclic and impact-based reference point indentation measurements in human cadaveric tibia.
    Karim L; Van Vliet M; Bouxsein ML
    Bone; 2018 Jan; 106():90-95. PubMed ID: 25862290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of inelastic deformation on strain rate-dependent mechanical behaviour of human cortical bone.
    Uniyal P; Kaur S; Dhiman V; Kumar Bhadada S; Kumar N
    J Biomech; 2023 Dec; 161():111853. PubMed ID: 37890220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces.
    Goff MG; Lambers FM; Nguyen TM; Sung J; Rimnac CM; Hernandez CJ
    Bone; 2015 Oct; 79():8-14. PubMed ID: 26008609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing fluoride content deteriorates rat bone mechanical properties.
    Rezaee T; Bouxsein ML; Karim L
    Bone; 2020 Jul; 136():115369. PubMed ID: 32320892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of damage mechanisms associated with reference point indentation in human bone.
    Beutel BG; Kennedy OD
    Bone; 2015 Jun; 75():1-7. PubMed ID: 25659950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of damage morphology on cortical bone fragility.
    Diab T; Vashishth D
    Bone; 2005 Jul; 37(1):96-102. PubMed ID: 15897021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic error in mechanical measures of damage during four-point bending fatigue of cortical bone.
    Landrigan MD; Roeder RK
    J Biomech; 2009 Jun; 42(9):1212-7. PubMed ID: 19394019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue of cortical bone under combined axial-torsional loading.
    Vashishth D; Tanner KE; Bonfield W
    J Orthop Res; 2001 May; 19(3):414-20. PubMed ID: 11398854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic mechanical property degradation during fatigue loading of cortical bone.
    Pattin CA; Caler WE; Carter DR
    J Biomech; 1996 Jan; 29(1):69-79. PubMed ID: 8839019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Damage mechanisms and failure modes of cortical bone under components of physiological loading.
    George WT; Vashishth D
    J Orthop Res; 2005 Sep; 23(5):1047-53. PubMed ID: 16140189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical Fatigue of Bovine Cortical Bone Using Ground Reaction Force Waveforms in Running.
    Loundagin LL; Schmidt TA; Edwards WB
    J Biomech Eng; 2018 Mar; 140(3):0310031-5. PubMed ID: 29080303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of gamma radiation sterilization on the fatigue crack propagation resistance of human cortical bone.
    Mitchell EJ; Stawarz AM; Kayacan R; Rimnac CM
    J Bone Joint Surg Am; 2004 Dec; 86(12):2648-57. PubMed ID: 15590849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.