BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 36049418)

  • 21. Kinematic and Kinetic Patterns Related to Free-Walking in Parkinson's Disease.
    Martínez M; Villagra F; Castellote JM; Pastor MA
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30513798
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automatic Assessments of Parkinsonian Gait with Wearable Sensors for Human Assistive Systems.
    Han Y; Liu X; Zhang N; Zhang X; Zhang B; Wang S; Liu T; Yi J
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850705
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Can Gait Features Help in Differentiating Parkinson's Disease Medication States and Severity Levels? A Machine Learning Approach.
    Chatzaki C; Skaramagkas V; Kefalopoulou Z; Tachos N; Kostikis N; Kanellos F; Triantafyllou E; Chroni E; Fotiadis DI; Tsiknakis M
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560313
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A multimodal Parkinson quantification by fusing eye and gait motion patterns, using covariance descriptors, from non-invasive computer vision.
    Archila J; Manzanera A; Martínez F
    Comput Methods Programs Biomed; 2022 Mar; 215():106607. PubMed ID: 34998167
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wearable sensor-based gait analysis to discriminate early Parkinson's disease from essential tremor.
    Lin S; Gao C; Li H; Huang P; Ling Y; Chen Z; Ren K; Chen S
    J Neurol; 2023 Apr; 270(4):2283-2301. PubMed ID: 36725698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Classification of Parkinson's disease with freezing of gait based on 360° turning analysis using 36 kinematic features.
    Park H; Shin S; Youm C; Cheon SM; Lee M; Noh B
    J Neuroeng Rehabil; 2021 Dec; 18(1):177. PubMed ID: 34930373
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PD-ResNet for Classification of Parkinson's Disease From Gait.
    Yang X; Ye Q; Cai G; Wang Y; Cai G
    IEEE J Transl Eng Health Med; 2022; 10():2200111. PubMed ID: 35795875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Upper limb motor pre-clinical assessment in Parkinson's disease using machine learning.
    Cavallo F; Moschetti A; Esposito D; Maremmani C; Rovini E
    Parkinsonism Relat Disord; 2019 Jun; 63():111-116. PubMed ID: 30826265
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative assessment of gait characteristics in patients with Parkinson's disease using 2D video.
    Liu P; Yu N; Yang Y; Yu Y; Sun X; Yu H; Han J; Wu J
    Parkinsonism Relat Disord; 2022 Aug; 101():49-56. PubMed ID: 35793570
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gait Analysis in Parkinson's Disease: An Overview of the Most Accurate Markers for Diagnosis and Symptoms Monitoring.
    di Biase L; Di Santo A; Caminiti ML; De Liso A; Shah SA; Ricci L; Di Lazzaro V
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32580330
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Specific Distribution of Digital Gait Biomarkers in Parkinson's Disease Using Body-Worn Sensors and Machine Learning.
    Cai G; Shi W; Wang Y; Weng H; Chen L; Yu J; Chen Z; Lin F; Ren K; Zeng Y; Liu J; Ling Y; Ye Q
    J Gerontol A Biol Sci Med Sci; 2023 Aug; 78(8):1348-1354. PubMed ID: 37067827
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Implementation of a Deep Learning Algorithm Based on Vertical Ground Reaction Force Time-Frequency Features for the Detection and Severity Classification of Parkinson's Disease.
    Setiawan F; Lin CW
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372444
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An automatic non-invasive method for Parkinson's disease classification.
    Joshi D; Khajuria A; Joshi P
    Comput Methods Programs Biomed; 2017 Jul; 145():135-145. PubMed ID: 28552119
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detecting early-stage Parkinson's disease from gait data.
    Nair P; Shojaei Baghini M; Pendharkar G; Chung H
    Proc Inst Mech Eng H; 2023 Nov; 237(11):1287-1296. PubMed ID: 37916586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discrimination between healthy and patients with Parkinson's disease from hand resting activity using inertial measurement unit.
    Peres LB; Calil BC; da Silva APSPB; Dionísio VC; Vieira MF; de Oliveira Andrade A; Pereira AA
    Biomed Eng Online; 2021 May; 20(1):50. PubMed ID: 34022895
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel machine learning-based hybrid strategy for severity assessment of Parkinson's disorders.
    Khera P; Kumar N
    Med Biol Eng Comput; 2022 Mar; 60(3):811-828. PubMed ID: 35122192
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrative gene expression analysis for the diagnosis of Parkinson's disease using machine learning and explainable AI.
    Bhandari N; Walambe R; Kotecha K; Kaliya M
    Comput Biol Med; 2023 Sep; 163():107140. PubMed ID: 37315380
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inertial-based gait metrics during turning improve the detection of early-stage Parkinson's disease patients.
    Meng L; Pang J; Yang Y; Chen L; Xu R; Ming D
    IEEE Trans Neural Syst Rehabil Eng; 2023 Jan; PP():. PubMed ID: 37021993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effective detection of abnormal gait patterns in Parkinson's disease patients using kinematics, nonlinear, and stability gait features.
    Carvajal-Castaño HA; Lemos-Duque JD; Orozco-Arroyave JR
    Hum Mov Sci; 2022 Feb; 81():102891. PubMed ID: 34781093
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A machine learning model for prediction of sarcopenia in patients with Parkinson's Disease.
    Kim M; Kim D; Kang H; Park S; Kim S; Yoo JI
    PLoS One; 2024; 19(1):e0296282. PubMed ID: 38165980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.