These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 36049516)
1. Environmental implications of land use change on the fate of Zn in agricultural soils: A case study of Puding karst soils, southwest China. Liang B; Han G; Zeng J; Liu M; Zhang Q Environ Res; 2022 Dec; 215(Pt 1):114221. PubMed ID: 36049516 [TBL] [Abstract][Full Text] [Related]
2. Tracing Fe cycle isotopically in soils based on different land uses: Insight from a typical karst catchment, Southwest China. Han R; Zhang Q; Xu Z Sci Total Environ; 2023 Jan; 856(Pt 1):158929. PubMed ID: 36152861 [TBL] [Abstract][Full Text] [Related]
3. Zn isotope fractionation in laterites from Yunnan province, southwest China: Implications for the Zn cycles and its environmental impacts in (sub-) tropics. Liang B; Han G; Zeng J; Qu R; Liu M; Liu J; Zhao Y Sci Total Environ; 2022 Oct; 844():157245. PubMed ID: 35817097 [TBL] [Abstract][Full Text] [Related]
4. Tracing contamination sources in soils with Cu and Zn isotopic ratios. Fekiacova Z; Cornu S; Pichat S Sci Total Environ; 2015 Jun; 517():96-105. PubMed ID: 25723961 [TBL] [Abstract][Full Text] [Related]
5. Responses of soil organic carbon cycle to land degradation by isotopically tracing in a typical karst area, southwest China. Han R; Zhang Q; Xu Z PeerJ; 2023; 11():e15249. PubMed ID: 37214105 [TBL] [Abstract][Full Text] [Related]
6. Environmental implications of agricultural abandonment on Fe cycling: Insight from iron forms and stable isotope composition in karst soil, southwest China. Zhang Q; Guilin Han ; Liu M; Zhang S; Wang L; Zhu G Environ Res; 2022 Dec; 215(Pt 2):114377. PubMed ID: 36152887 [TBL] [Abstract][Full Text] [Related]
7. Zinc uptake and replenishment mechanisms during repeated phytoextraction using Sedum plumbizincicola revealed by stable isotope fractionation. Zhou J; Li Z; Zhang X; Yu H; Wu L; Huang F; Luo Y; Christie P Sci Total Environ; 2022 Feb; 806(Pt 3):151306. PubMed ID: 34743872 [TBL] [Abstract][Full Text] [Related]
8. Cadmium isotope fractionation during transport processes within agricultural soil profiles in a mining area: Implications for source tracing. Gao T; Zhou J; Zhang P; Wang W; Zhou T; Li Z; Christie P; Wu L Environ Pollut; 2022 Dec; 314():120327. PubMed ID: 36195194 [TBL] [Abstract][Full Text] [Related]
9. Geochemical Behaviors of Rare Earth Elements (REEs) in Karst Soils under Different Land-Use Types: A Case in Yinjiang Karst Catchment, Southwest China. Han R; Xu Z Int J Environ Res Public Health; 2021 Jan; 18(2):. PubMed ID: 33435431 [TBL] [Abstract][Full Text] [Related]
10. Zinc isotopic signature in tropical soils: A review. Liang B; Han G; Zhao Y Sci Total Environ; 2022 May; 820():153303. PubMed ID: 35066042 [TBL] [Abstract][Full Text] [Related]
11. [Speciation Characteristics and Risk Assessment of Soil Heavy Metals from Puding Karst Critical Zone, Guizhou Province]. Zhang Q; Hah GL Huan Jing Ke Xue; 2022 Jun; 43(6):3269-3277. PubMed ID: 35686797 [TBL] [Abstract][Full Text] [Related]
12. [Effect of Land Use/Land Cover Change on the Concentration of Se and Heavy Metals in Soils from a "Return Cropland to Forest" Area, Southwest China]. Liu YL; Liu SL; Wu M; Tian XL; Liu SY Huan Jing Ke Xue; 2022 Jun; 43(6):3262-3268. PubMed ID: 35686796 [TBL] [Abstract][Full Text] [Related]
14. Land-use conversion controls on the mobility of Zn in paddy soils revealed by stable Zn isotopes. Zheng X; Han G; Liang B; Zhu G Sci Total Environ; 2023 Apr; 870():161945. PubMed ID: 36739033 [TBL] [Abstract][Full Text] [Related]
15. Apportionment of sources of heavy metals to agricultural soils using isotope fingerprints and multivariate statistical analyses. Wang P; Li Z; Liu J; Bi X; Ning Y; Yang S; Yang X Environ Pollut; 2019 Jun; 249():208-216. PubMed ID: 30893633 [TBL] [Abstract][Full Text] [Related]
16. Antagonistic Cd and Zn isotope behavior in the extracted soil fractions from industrial areas. Ratié G; Vaňková Z; Baragaño D; Liao R; Šípková A; Gallego JR; Chrastný V; Lewandowská Š; Ding S; Komárek M J Hazard Mater; 2022 Oct; 439():129519. PubMed ID: 35882173 [TBL] [Abstract][Full Text] [Related]
17. Zinc in soil reflecting the intensive coal mining activities: Evidence from stable zinc isotopes analysis. Wang D; Zheng L; Ren M; Li C; Dong X; Wei X; Zhou W; Cui J Ecotoxicol Environ Saf; 2022 Jul; 239():113669. PubMed ID: 35605319 [TBL] [Abstract][Full Text] [Related]
18. Using Zn isotopes to trace Zn sources and migration pathways in paddy soils around mining area. Liu Y; Gao T; Xia Y; Wang Z; Liu C; Li S; Wu Q; Qi M; Lv Y Environ Pollut; 2020 Dec; 267():115616. PubMed ID: 33254624 [TBL] [Abstract][Full Text] [Related]
19. Source identification and exchangeability of heavy metals accumulated in vegetable soils in the coastal plain of eastern Zhejiang province, China. Qiutong X; Mingkui Z Ecotoxicol Environ Saf; 2017 Aug; 142():410-416. PubMed ID: 28454053 [TBL] [Abstract][Full Text] [Related]
20. Isotopic signatures reveal zinc cycling in the natural habitat of hyperaccumulator Dichapetalum gelonioides subspecies from Malaysian Borneo. van der Ent A; Nkrumah PN; Aarts MGM; Baker AJM; Degryse F; Wawryk C; Kirby JK BMC Plant Biol; 2021 Sep; 21(1):437. PubMed ID: 34579652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]