These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36049690)

  • 1. Inhibition of humic acid on copper pollution caused by chalcopyrite biooxidation.
    Wang J; Liu Y; Luo W; Wang X; Liao R; Yu S; Hong M; Zhao C; Yang B; Liu Y; Liu X; Qiu G
    Sci Total Environ; 2022 Dec; 851(Pt 2):158200. PubMed ID: 36049690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined effects of jarosite and visible light on chalcopyrite dissolution mediated by Acidithiobacillus ferrooxidans.
    Yang B; Lin M; Fang J; Zhang R; Luo W; Wang X; Liao R; Wu B; Wang J; Gan M; Liu B; Zhang Y; Liu X; Qin W; Qiu G
    Sci Total Environ; 2020 Jan; 698():134175. PubMed ID: 31518786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of biochar for controlling acid mine drainage through the inhibition of chalcopyrite biodissolution.
    Yang B; Luo W; Wang X; Yu S; Gan M; Wang J; Liu X; Qiu G
    Sci Total Environ; 2020 Oct; 737():139485. PubMed ID: 32516660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic effect of silver on copper release from chalcopyrite mediated by Acidithiobacillus ferrooxidans.
    Yang B; Zhao C; Luo W; Liao R; Gan M; Wang J; Liu X; Qiu G
    J Hazard Mater; 2020 Jun; 392():122290. PubMed ID: 32092647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined effect of silver ion and pyrite on AMD formation generated by chalcopyrite bio-dissolution.
    Liao R; Yang B; Huang X; Hong M; Yu S; Liu S; Wang J; Qiu G
    Chemosphere; 2021 Sep; 279():130516. PubMed ID: 33878694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans.
    Zhao H; Wang J; Hu M; Qin W; Zhang Y; Qiu G
    Bioresour Technol; 2013 Dec; 149():71-6. PubMed ID: 24084207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization of
    Song CI; Jo CM; Ri HG
    Iran J Biotechnol; 2020 Jul; 18(3):e2356. PubMed ID: 33850940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential surface modification mechanism of chalcopyrite and pyrite by Thiobacillus ferrooxidans and its response to bioflotation.
    Su C; Cai J; Zheng Q; Peng R; Yu X; Shen P; Liu D
    Bioresour Technol; 2024 May; 399():130619. PubMed ID: 38552857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans.
    Lara RH; García-Meza JV; González I; Cruz R
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2711-24. PubMed ID: 22584430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the relation between adhesion force and chalcopyrite-bioleaching by Acidithiobacillus ferrooxidans.
    Zhu J; Wang Q; Zhou S; Li Q; Gan M; Jiang H; Qin W; Liu X; Hu Y; Qiu G
    Colloids Surf B Biointerfaces; 2015 Feb; 126():351-7. PubMed ID: 25511439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel integration strategy for enhancing chalcopyrite bioleaching by Acidithiobacillus sp. in a 7-L fermenter.
    Feng S; Yang H; Zhan X; Wang W
    Bioresour Technol; 2014 Jun; 161():371-8. PubMed ID: 24727697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioelectrochemical system for the biooxidation of a chalcopyrite concentrate by acidophilic bacteria coupled to energy current generation and cathodic copper recovery.
    Fernández-Reyes JS; García-Meza JV
    Biotechnol Lett; 2018 Jan; 40(1):63-73. PubMed ID: 28940098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioleaching of chalcopyrite concentrate by a moderately thermophilic culture in a stirred tank reactor.
    Zhou HB; Zeng WM; Yang ZF; Xie YJ; Qiu GZ
    Bioresour Technol; 2009 Jan; 100(2):515-20. PubMed ID: 18657418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite.
    Li Y; Kawashima N; Li J; Chandra AP; Gerson AR
    Adv Colloid Interface Sci; 2013 Sep; 197-198():1-32. PubMed ID: 23791420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The detoxification potential of ferric ions for bioleaching of the chalcopyrite associated with fluoride-bearing gangue mineral.
    Ma L; Wu J; Liu X; Tan L; Wang X
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2403-2412. PubMed ID: 30617533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of pyrite, pyrrhotite, and chalcopyrite dissolution by Acidithiobacillus ferrooxidans.
    Kocaman AT; Cemek M; Edwards KJ
    Can J Microbiol; 2016 Aug; 62(8):629-42. PubMed ID: 27332502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights to the effects of free cells on community structure of attached cells and chalcopyrite bioleaching during different stages.
    Feng S; Yang H; Wang W
    Bioresour Technol; 2016 Jan; 200():186-93. PubMed ID: 26492170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A direct observation of bacterial coverage and biofilm formation by Acidithiobacillus ferrooxidans on chalcopyrite and pyrite surfaces.
    Yang Y; Tan SN; Glenn AM; Harmer S; Bhargava S; Chen M
    Biofouling; 2015; 31(7):575-86. PubMed ID: 26343200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory effect of iron-oxidizing bacteria on ferrous-promoted chalcopyrite leaching.
    Hiroyoshi N; Hirota M; Hirajima T; Tsunekawa M
    Biotechnol Bioeng; 1999 Aug; 64(4):478-83. PubMed ID: 10397886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adhesion forces between cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans or Leptospirillum ferrooxidans and chalcopyrite.
    Zhu J; Li Q; Jiao W; Jiang H; Sand W; Xia J; Liu X; Qin W; Qiu G; Hu Y; Chai L
    Colloids Surf B Biointerfaces; 2012 Jun; 94():95-100. PubMed ID: 22341516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.