These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 36049694)

  • 1. Priming of soil organic carbon mineralization and its temperature sensitivity in response to vegetation restoration in a karst area of Southwest China.
    Cheng H; Zhou X; Dong R; Wang X; Liu G; Li Q
    Sci Total Environ; 2022 Dec; 851(Pt 2):158400. PubMed ID: 36049694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vegetation restoration facilitates belowground microbial network complexity and recalcitrant soil organic carbon storage in southwest China karst region.
    Hu L; Li Q; Yan J; Liu C; Zhong J
    Sci Total Environ; 2022 May; 820():153137. PubMed ID: 35041964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils.
    Fang Y; Nazaries L; Singh BK; Singh BP
    Glob Chang Biol; 2018 Jul; 24(7):2775-2790. PubMed ID: 29603502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variations in the patterns of soil organic carbon mineralization and microbial communities in response to exogenous application of rice straw and calcium carbonate.
    Feng S; Huang Y; Ge Y; Su Y; Xu X; Wang Y; He X
    Sci Total Environ; 2016 Nov; 571():615-23. PubMed ID: 27401276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competitive interaction with keystone taxa induced negative priming under biochar amendments.
    Chen L; Jiang Y; Liang C; Luo Y; Xu Q; Han C; Zhao Q; Sun B
    Microbiome; 2019 May; 7(1):77. PubMed ID: 31109381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of soil microbial necromass to SOC stocks during vegetation recovery in a subtropical karst ecosystem.
    Guo Z; Zhang X; Dungait JAJ; Green SM; Wen X; Quine TA
    Sci Total Environ; 2021 Mar; 761():143945. PubMed ID: 33360125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors controlling accumulation of soil organic carbon along vegetation succession in a typical karst region in Southwest China.
    Liu S; Zhang W; Wang K; Pan F; Yang S; Shu S
    Sci Total Environ; 2015 Jul; 521-522():52-8. PubMed ID: 25828412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effects of vegetation restoration on nutrient and microbial properties of soil aggregates with different particle sizes in the loess hilly regions of Ningxia, Northwest China].
    Li QJ; Xue ZJ; Zhou ZC
    Ying Yong Sheng Tai Xue Bao; 2019 Jan; 30(1):137-145. PubMed ID: 30907534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different effects of plant-derived dissolved organic matter (DOM) and urea on the priming of soil organic carbon.
    Qiu Q; Wu L; Ouyang Z; Li B; Xu Y
    Environ Sci Process Impacts; 2016 Mar; 18(3):330-41. PubMed ID: 26791412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonality, Rather than Nutrient Addition or Vegetation Types, Influenced Short-Term Temperature Sensitivity of Soil Organic Carbon Decomposition.
    Qian YQ; He FP; Wang W
    PLoS One; 2016; 11(4):e0153415. PubMed ID: 27070782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term active restoration of extremely degraded alpine grassland accelerated turnover and increased stability of soil carbon.
    Bai Y; Ma L; Degen AA; Rafiq MK; Kuzyakov Y; Zhao J; Zhang R; Zhang T; Wang W; Li X; Long R; Shang Z
    Glob Chang Biol; 2020 Dec; 26(12):7217-7228. PubMed ID: 32974963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of soil microbial community to plant composition changes in broad-leaved forests of the karst area in Mid-Subtropical China.
    Liu L; Zhu N; Zhou G; Dang P; Yang X; Qiu L; Huang M; Gong Y; Zhao S; Chen J
    PeerJ; 2022; 10():e12739. PubMed ID: 35282286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of vegetation succession on soil organic carbon fractions and stability in a karst valley area, Southwest China.
    Luo Y; Li Y; Liu S; Yu P
    Environ Monit Assess; 2022 Jul; 194(8):562. PubMed ID: 35789436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soil carbon accumulation with increasing temperature under both managed and natural vegetation restoration in calcareous soils.
    Hu P; Zhang W; Chen H; Li D; Zhao Y; Zhao J; Xiao J; Wu F; He X; Luo Y; Wang K
    Sci Total Environ; 2021 May; 767():145298. PubMed ID: 33636790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of soil organic carbon mineralization in typical Karst soils following the addition of 14C-labeled rice straw and CaCO3.
    Hu L; Su Y; He X; Wu J; Zheng H; Li Y; Wang A
    J Sci Food Agric; 2012 Mar; 92(5):1112-8. PubMed ID: 21953535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments.
    Rousk K; Michelsen A; Rousk J
    Glob Chang Biol; 2016 Dec; 22(12):4150-4161. PubMed ID: 27010358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochar addition stabilized soil carbon sequestration by reducing temperature sensitivity of mineralization and altering the microbial community in a greenhouse vegetable field.
    Zhang X; Zhang Q; Zhan L; Xu X; Bi R; Xiong Z
    J Environ Manage; 2022 Jul; 313():114972. PubMed ID: 35378346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased associated effects of topography and litter and soil nutrients on soil enzyme activities and microbial biomass along vegetation successions in karst ecosystem, southwestern China.
    Pan F; Zhang W; Liang Y; Liu S; Wang K
    Environ Sci Pollut Res Int; 2018 Jun; 25(17):16979-16990. PubMed ID: 29627959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of Vegetation Restoration on Soil Nitrogen Pathways in a Karst Region of Southwest China].
    Yang Y; Ouyang YD; Chen H; Xiao KC; Li DJ
    Huan Jing Ke Xue; 2018 Jun; 39(6):2845-2852. PubMed ID: 29965643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of variable temperature on organic carbon mineralization in typical limestone soils].
    Wang LG; Gao YH; Ding CH; Ci E; Xie DT
    Huan Jing Ke Xue; 2014 Nov; 35(11):4291-7. PubMed ID: 25639108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.