These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 36049735)

  • 21. Analysis of a non-integer order mathematical model for double strains of dengue and COVID-19 co-circulation using an efficient finite-difference method.
    Obiajulu EF; Omame A; Inyama SC; Diala UH; AlQahtani SA; Al-Rakhami MS; Alawwad AM; Alotaibi AA
    Sci Rep; 2023 Oct; 13(1):17787. PubMed ID: 37853028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mathematical model of COVID-19 using fractional derivative: outbreak in India with dynamics of transmission and control.
    Shaikh AS; Shaikh IN; Nisar KS
    Adv Differ Equ; 2020; 2020(1):373. PubMed ID: 32834815
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of fractional optimal control theory for the mitigating of novel coronavirus in Algeria.
    El Hadj Moussa Y; Boudaoui A; Ullah S; Muzammil K; Riaz MB
    Results Phys; 2022 Aug; 39():105651. PubMed ID: 35668848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A fractional order mathematical model for COVID-19 dynamics with quarantine, isolation, and environmental viral load.
    Aba Oud MA; Ali A; Alrabaiah H; Ullah S; Khan MA; Islam S
    Adv Differ Equ; 2021; 2021(1):106. PubMed ID: 33613668
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling and analysis of the dynamics of novel coronavirus (COVID-19) with Caputo fractional derivative.
    Ali A; Alshammari FS; Islam S; Khan MA; Ullah S
    Results Phys; 2021 Jan; 20():103669. PubMed ID: 33520621
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational modeling of fractional COVID-19 model by Haar wavelet collocation Methods with real data.
    Zarin R; Humphries UW; Khan A; Raezah AA
    Math Biosci Eng; 2023 Apr; 20(6):11281-11312. PubMed ID: 37322982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A case study of Covid-19 epidemic in India via new generalised Caputo type fractional derivatives.
    Kumar P; Suat Erturk V
    Math Methods Appl Sci; 2021 Feb; ():. PubMed ID: 33821068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Mathematical Model of Vaccinations Using New Fractional Order Derivative.
    Asma ; Yousaf M; Afzaal M; DarAssi MH; Khan MA; Alshahrani MY; Suliman M
    Vaccines (Basel); 2022 Nov; 10(12):. PubMed ID: 36560391
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modelling and analysis of fractional-order vaccination model for control of COVID-19 outbreak using real data.
    Joshi H; Jha BK; Yavuz M
    Math Biosci Eng; 2023 Jan; 20(1):213-240. PubMed ID: 36650763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of a time-fractional COVID-19 mathematical model with singular kernel.
    Adnan ; Ali A; Ur Rahmamn M; Shah Z; Kumam P
    Adv Contin Discret Model; 2022; 2022(1):34. PubMed ID: 35462615
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A hybrid fractional optimal control for a novel Coronavirus (2019-nCov) mathematical model.
    Sweilam NH; Al-Mekhlafi SM; Baleanu D
    J Adv Res; 2021 Sep; 32():149-160. PubMed ID: 32864171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling and analysis of novel COVID-19 outbreak under fractal-fractional derivative in Caputo sense with power-law: a case study of Pakistan.
    Kubra KT; Ali R
    Model Earth Syst Environ; 2023 Mar; ():1-18. PubMed ID: 37361699
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stability Analysis of an Extended SEIR COVID-19 Fractional Model with Vaccination Efficiency.
    Wali M; Arshad S; Huang J
    Comput Math Methods Med; 2022; 2022():3754051. PubMed ID: 36176740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mathematical modeling of coronavirus disease COVID-19 dynamics using CF and ABC non-singular fractional derivatives.
    Panwar VS; Sheik Uduman PS; Gómez-Aguilar JF
    Chaos Solitons Fractals; 2021 Apr; 145():110757. PubMed ID: 33558794
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mathematical analysis of SIRD model of COVID-19 with Caputo fractional derivative based on real data.
    Nisar KS; Ahmad S; Ullah A; Shah K; Alrabaiah H; Arfan M
    Results Phys; 2021 Feb; 21():103772. PubMed ID: 33520629
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of Caputo fractional-order model for COVID-19 with lockdown.
    Ahmed I; Baba IA; Yusuf A; Kumam P; Kumam W
    Adv Differ Equ; 2020; 2020(1):394. PubMed ID: 32834819
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fractional optimal control of COVID-19 pandemic model with generalized Mittag-Leffler function.
    Khan A; Zarin R; Humphries UW; Akgül A; Saeed A; Gul T
    Adv Differ Equ; 2021; 2021(1):387. PubMed ID: 34426736
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new fuzzy fractional order model of transmission of Covid-19 with quarantine class.
    Hanif A; Butt AIK; Ahmad S; Din RU; Inc M
    Eur Phys J Plus; 2021; 136(11):1179. PubMed ID: 34849324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative.
    Rahman MU; Arfan M; Shah K; Gómez-Aguilar JF
    Chaos Solitons Fractals; 2020 Nov; 140():110232. PubMed ID: 32863613
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A numerical simulation of fractional order mathematical modeling of COVID-19 disease in case of Wuhan China.
    Yadav RP; Renu Verma
    Chaos Solitons Fractals; 2020 Nov; 140():110124. PubMed ID: 32834636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.