These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36049926)

  • 1. The study of the dynamics of the order parameter of coupled oscillators in the Ott-Antonsen scheme for generic frequency distributions.
    Campa A
    Chaos; 2022 Aug; 32(8):083104. PubMed ID: 36049926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity of dynamical behaviors due to initial conditions: Extension of the Ott-Antonsen ansatz for identical Kuramoto-Sakaguchi phase oscillators.
    Ichiki A; Okumura K
    Phys Rev E; 2020 Feb; 101(2-1):022211. PubMed ID: 32168625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ott-Antonsen attractiveness for parameter-dependent oscillatory systems.
    Pietras B; Daffertshofer A
    Chaos; 2016 Oct; 26(10):103101. PubMed ID: 27802676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of Noisy Oscillator Populations beyond the Ott-Antonsen Ansatz.
    Tyulkina IV; Goldobin DS; Klimenko LS; Pikovsky A
    Phys Rev Lett; 2018 Jun; 120(26):264101. PubMed ID: 30004770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collective mode reductions for populations of coupled noisy oscillators.
    Goldobin DS; Tyulkina IV; Klimenko LS; Pikovsky A
    Chaos; 2018 Oct; 28(10):101101. PubMed ID: 30384615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Order parameter analysis for low-dimensional behaviors of coupled phase-oscillators.
    Gao J; Xu C; Sun Y; Zheng Z
    Sci Rep; 2016 Jul; 6():30184. PubMed ID: 27443639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entrainment degree of globally coupled Winfree oscillators under external forcing.
    Zhang Y; Hoveijn I; Efstathiou K
    Chaos; 2022 Oct; 32(10):103121. PubMed ID: 36319288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ott-Antonsen ansatz for the D-dimensional Kuramoto model: A constructive approach.
    Barioni AED; de Aguiar MAM
    Chaos; 2021 Nov; 31(11):113141. PubMed ID: 34881619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative dynamics in coupled systems of fast and slow phase oscillators.
    Sakaguchi H; Okita T
    Phys Rev E; 2016 Feb; 93(2):022212. PubMed ID: 26986336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exact finite-dimensional reduction for a population of noisy oscillators and its link to Ott-Antonsen and Watanabe-Strogatz theories.
    Cestnik R; Pikovsky A
    Chaos; 2022 Nov; 32(11):113126. PubMed ID: 36456354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exact results for the Kuramoto model with a bimodal frequency distribution.
    Martens EA; Barreto E; Strogatz SH; Ott E; So P; Antonsen TM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026204. PubMed ID: 19391817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dynamics of network coupled phase oscillators: an ensemble approach.
    Barlev G; Antonsen TM; Ott E
    Chaos; 2011 Jun; 21(2):025103. PubMed ID: 21721781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The asymptotic behavior of the order parameter for the infinite-N Kuramoto model.
    Mirollo RE
    Chaos; 2012 Dec; 22(4):043118. PubMed ID: 23278053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale dynamics in communities of phase oscillators.
    Anderson D; Tenzer A; Barlev G; Girvan M; Antonsen TM; Ott E
    Chaos; 2012 Mar; 22(1):013102. PubMed ID: 22462978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronization in the Kuramoto model in presence of stochastic resetting.
    Sarkar M; Gupta S
    Chaos; 2022 Jul; 32(7):073109. PubMed ID: 35907730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchy of Exact Low-Dimensional Reductions for Populations of Coupled Oscillators.
    Cestnik R; Pikovsky A
    Phys Rev Lett; 2022 Feb; 128(5):054101. PubMed ID: 35179937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency assortativity can induce chaos in oscillator networks.
    Skardal PS; Restrepo JG; Ott E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):060902. PubMed ID: 26172652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of Structured Networks of Winfree Oscillators.
    Laing CR; Bläsche C; Means S
    Front Syst Neurosci; 2021; 15():631377. PubMed ID: 33643004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-dimensional behavior of Kuramoto model with inertia in complex networks.
    Ji P; Peron TK; Rodrigues FA; Kurths J
    Sci Rep; 2014 May; 4():4783. PubMed ID: 24786680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matrix coupling and generalized frustration in Kuramoto oscillators.
    Buzanello GL; Barioni AED; de Aguiar MAM
    Chaos; 2022 Sep; 32(9):093130. PubMed ID: 36182358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.