These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 36049953)
1. Anticipating measure synchronization in coupled Hamiltonian systems with machine learning. Zhang H; Fan H; Du Y; Wang L; Wang X Chaos; 2022 Aug; 32(8):083136. PubMed ID: 36049953 [TBL] [Abstract][Full Text] [Related]
2. Learning Hamiltonian dynamics with reservoir computing. Zhang H; Fan H; Wang L; Wang X Phys Rev E; 2021 Aug; 104(2-1):024205. PubMed ID: 34525517 [TBL] [Abstract][Full Text] [Related]
3. Frequency and wavelet based analyses of partial and complete measure synchronization in a system of three nonlinearly coupled oscillators. De S; Gupta S; Janaki MS; Sekar Iyengar AN Chaos; 2018 Nov; 28(11):113108. PubMed ID: 30501204 [TBL] [Abstract][Full Text] [Related]
4. Exploring the route to measure synchronization in non-linearly coupled Hamiltonian systems. Gupta S; De S; Janaki MS; Sekar Iyengar AN Chaos; 2017 Nov; 27(11):113103. PubMed ID: 29195306 [TBL] [Abstract][Full Text] [Related]
5. Reconstructing bifurcation diagrams of chaotic circuits with reservoir computing. Luo H; Du Y; Fan H; Wang X; Guo J; Wang X Phys Rev E; 2024 Feb; 109(2-1):024210. PubMed ID: 38491568 [TBL] [Abstract][Full Text] [Related]
6. Criticality in reservoir computer of coupled phase oscillators. Wang L; Fan H; Xiao J; Lan Y; Wang X Phys Rev E; 2022 May; 105(5):L052201. PubMed ID: 35706173 [TBL] [Abstract][Full Text] [Related]
7. Measure synchronization in coupled phi4 Hamiltonian systems. Wang X; Zhan M; Lai CH; Gang H Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066215. PubMed ID: 16241334 [TBL] [Abstract][Full Text] [Related]
9. Synchronization transition of heterogeneously coupled oscillators on scale-free networks. Oh E; Lee DS; Kahng B; Kim D Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011104. PubMed ID: 17358107 [TBL] [Abstract][Full Text] [Related]
10. Experimental investigation of high-quality synchronization of coupled oscillators. Blakely JN; Gauthier DJ; Johnson G; Carroll TL; Pecora LM Chaos; 2000 Sep; 10(3):738-744. PubMed ID: 12779423 [TBL] [Abstract][Full Text] [Related]
11. Inferring synchronizability of networked heterogeneous oscillators with machine learning. Wang L; Fan H; Wang Y; Gao J; Lan Y; Xiao J; Wang X Phys Rev E; 2023 Feb; 107(2-1):024314. PubMed ID: 36932535 [TBL] [Abstract][Full Text] [Related]
12. Synchronization of chaotic systems and their machine-learning models. Weng T; Yang H; Gu C; Zhang J; Small M Phys Rev E; 2019 Apr; 99(4-1):042203. PubMed ID: 31108603 [TBL] [Abstract][Full Text] [Related]
13. Using wavelet analysis to investigate synchronization. Gupta S; De S; Janaki MS; Iyengar ANS Phys Rev E; 2019 Aug; 100(2-1):022218. PubMed ID: 31574617 [TBL] [Abstract][Full Text] [Related]
14. Kuramoto dynamics in Hamiltonian systems. Witthaut D; Timme M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032917. PubMed ID: 25314514 [TBL] [Abstract][Full Text] [Related]
15. Hamiltonian mean field model: Effect of network structure on synchronization dynamics. Virkar YS; Restrepo JG; Meiss JD Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052802. PubMed ID: 26651739 [TBL] [Abstract][Full Text] [Related]
16. Synchronization of coupled bistable chaotic systems: experimental study. Pisarchik AN; Jaimes-Reátegui R; García-López JH Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1864):459-73. PubMed ID: 17681912 [TBL] [Abstract][Full Text] [Related]
17. High-Performance Reservoir Computing With Fluctuations in Linear Networks. Nokkala J; Martinez-Pena R; Zambrini R; Soriano MC IEEE Trans Neural Netw Learn Syst; 2022 Jun; 33(6):2664-2675. PubMed ID: 34460401 [TBL] [Abstract][Full Text] [Related]
18. Emergent Spaces for Coupled Oscillators. Thiem TN; Kooshkbaghi M; Bertalan T; Laing CR; Kevrekidis IG Front Comput Neurosci; 2020; 14():36. PubMed ID: 32528268 [TBL] [Abstract][Full Text] [Related]
19. Synchronization transition from chaos to limit cycle oscillations when a locally coupled chaotic oscillator grid is coupled globally to another chaotic oscillator. Godavarthi V; Kasthuri P; Mondal S; Sujith RI; Marwan N; Kurths J Chaos; 2020 Mar; 30(3):033121. PubMed ID: 32237762 [TBL] [Abstract][Full Text] [Related]
20. Bifurcations in the Kuramoto model on graphs. Chiba H; Medvedev GS; Mizuhara MS Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]