BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36050018)

  • 1. Size-dependent effects of the thermal transport at gold nanoparticle-water interfaces.
    Gutiérrez-Varela O; Merabia S; Santamaria R
    J Chem Phys; 2022 Aug; 157(8):084702. PubMed ID: 36050018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial Control of Heat Flow at the Nanoscale Using Janus Particles.
    Olarte-Plata JD; Gabriel J; Albella P; Bresme F
    ACS Nano; 2022 Jan; 16(1):694-709. PubMed ID: 34918910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Curvature and temperature-dependent thermal interface conductance between nanoscale gold and water.
    Wilson BA; Nielsen SO; Randrianalisoa JH; Qin Z
    J Chem Phys; 2022 Aug; 157(5):054703. PubMed ID: 35933210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vapor Nanobubbles around Heated Nanoparticles: Wetting Dependence of the Local Fluid Thermodynamics and Kinetics of Nucleation.
    Gutiérrez-Varela O; Lombard J; Biben T; Santamaria R; Merabia S
    Langmuir; 2023 Dec; 39(50):18263-18275. PubMed ID: 38061075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Molecular Dynamics Analysis on Interfacial Thermal Resistance between Particle and Medium in Light-Induced Heat Transfer of Plasmonic Nanofluid.
    Zhao C; An W; Zhang Y; Dong Q; Gao N
    Langmuir; 2022 Feb; 38(7):2327-2334. PubMed ID: 35134292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of Hydrophilic Surface Functionalization-Induced Thermal Conductance Enhancement across Solid-Water Interfaces.
    Huang D; Ma R; Zhang T; Luo T
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28159-28165. PubMed ID: 30056700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat Transfer in Gold Interfaces Capped with Thiolated Polyethylene Glycol: A Molecular Dynamics Study.
    Shavalier SA; Gezelter JD
    J Phys Chem B; 2023 Nov; 127(47):10215-10225. PubMed ID: 37978942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal transport across nanoparticle-fluid interfaces: the interplay of interfacial curvature and nanoparticle-fluid interactions.
    Tascini AS; Armstrong J; Chiavazzo E; Fasano M; Asinari P; Bresme F
    Phys Chem Chem Phys; 2017 Jan; 19(4):3244-3253. PubMed ID: 28083587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal transport at a solid-nanofluid interface: from increase of thermal resistance towards a shift of rapid boiling.
    Han H; Merabia S; Müller-Plathe F
    Nanoscale; 2017 Jun; 9(24):8314-8320. PubMed ID: 28585964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Heat Flow between Charged Nanoparticles and an Aqueous Electrolyte.
    Rabani R; Saidi MH; Rajabpour A; Joly L; Merabia S
    Langmuir; 2023 Oct; 39(43):15222-15230. PubMed ID: 37865920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy.
    Van de Broek B; Grandjean D; Trekker J; Ye J; Verstreken K; Maes G; Borghs G; Nikitenko S; Lagae L; Bartic C; Temst K; Van Bael MJ
    Small; 2011 Sep; 7(17):2498-506. PubMed ID: 21744495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal transport at a nanoparticle-water interface: A molecular dynamics and continuum modeling study.
    Rajabpour A; Seif R; Arabha S; Heyhat MM; Merabia S; Hassanali A
    J Chem Phys; 2019 Mar; 150(11):114701. PubMed ID: 30901998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.
    Chang C; Yang C; Liu Y; Tao P; Song C; Shang W; Wu J; Deng T
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23412-8. PubMed ID: 27537862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal Temperature and Pressure in Thermoplasmonic Gold Nanosphere-Water Systems.
    Lindley SA; An Q; Goddard WA; Cooper JK
    ACS Nano; 2021 Apr; 15(4):6276-6288. PubMed ID: 33621047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal transport across flat and curved gold-water interfaces: Assessing the effects of the interfacial modeling parameters.
    Paniagua-Guerra LE; Ramos-Alvarado B
    J Chem Phys; 2023 Apr; 158(13):134717. PubMed ID: 37031121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat generation by optically and thermally interacting aggregates of gold nanoparticles under illumination.
    Zeng N; Murphy AB
    Nanotechnology; 2009 Sep; 20(37):375702. PubMed ID: 19706944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling local thermal gradients at molecular scales with Janus nanoheaters.
    Jiang M; Chapman A; Olarte-Plata JD; Bresme F
    Nanoscale; 2023 Jun; 15(24):10264-10276. PubMed ID: 37183654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal Transport across SiC-Water Interfaces.
    Gonzalez-Valle CU; Kumar S; Ramos-Alvarado B
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):29179-29186. PubMed ID: 30063129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Flexible Polymer Nanofiber-Gold Nanoparticle Composite Film for Solar-Thermal Seawater Desalination.
    Mu S; Nan J; Shi C; Tang X; Liu S; Chen H; Zhang J; Yang B
    Macromol Rapid Commun; 2020 Dec; 41(24):e2000390. PubMed ID: 33191535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local Enhancement of Lipid Membrane Permeability Induced by Irradiated Gold Nanoparticles.
    Torchi A; Simonelli F; Ferrando R; Rossi G
    ACS Nano; 2017 Dec; 11(12):12553-12561. PubMed ID: 29161019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.