BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36050026)

  • 1. Numerically "exact" simulations of a quantum Carnot cycle: Analysis using thermodynamic work diagrams.
    Koyanagi S; Tanimura Y
    J Chem Phys; 2022 Aug; 157(8):084110. PubMed ID: 36050026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The laws of thermodynamics for quantum dissipative systems: A quasi-equilibrium Helmholtz energy approach.
    Koyanagi S; Tanimura Y
    J Chem Phys; 2022 Jul; 157(1):014104. PubMed ID: 35803810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action and Entropy in Heat Engines: An Action Revision of the Carnot Cycle.
    Kennedy IR; Hodzic M
    Entropy (Basel); 2021 Jul; 23(7):. PubMed ID: 34356401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerically "exact" simulations of entropy production in the fully quantum regime: Boltzmann entropy vs von Neumann entropy.
    Sakamoto S; Tanimura Y
    J Chem Phys; 2020 Dec; 153(23):234107. PubMed ID: 33353341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines.
    Kato A; Tanimura Y
    J Chem Phys; 2016 Dec; 145(22):224105. PubMed ID: 27984915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerically "exact" approach to open quantum dynamics: The hierarchical equations of motion (HEOM).
    Tanimura Y
    J Chem Phys; 2020 Jul; 153(2):020901. PubMed ID: 32668942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine.
    Xu YY; Chen B; Liu J
    Phys Rev E; 2018 Feb; 97(2-1):022130. PubMed ID: 29548214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum thermodynamic cycle with quantum phase transition.
    Ma YH; Su SH; Sun CP
    Phys Rev E; 2017 Aug; 96(2-1):022143. PubMed ID: 28950560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carnot's cycle for small systems: irreversibility and cost of operations.
    Sekimoto K; Takagi F; Hondou T
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt A):7759-68. PubMed ID: 11138050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classical and quantum thermodynamics described as a system-bath model: The dimensionless minimum work principle.
    Koyanagi S; Tanimura Y
    J Chem Phys; 2024 Jun; 160(23):. PubMed ID: 38904216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum-parametric-oscillator heat engines in squeezed thermal baths: Foundational theoretical issues.
    Arısoy O; Hsiang JT; Hu BL
    Phys Rev E; 2022 Jan; 105(1-1):014108. PubMed ID: 35193212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximum efficiency of ideal heat engines based on a small system: correction to the Carnot efficiency at the nanoscale.
    Quan HT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062134. PubMed ID: 25019751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does ℏ play a role in multidimensional spectroscopy? Reduced hierarchy equations of motion approach to molecular vibrations.
    Sakurai A; Tanimura Y
    J Phys Chem A; 2011 Apr; 115(16):4009-22. PubMed ID: 21247206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impurity reveals distinct operational phases in quantum thermodynamic cycles.
    Prakash A; Kumar A; Benjamin C
    Phys Rev E; 2022 Nov; 106(5-1):054112. PubMed ID: 36559514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The power of a critical heat engine.
    Campisi M; Fazio R
    Nat Commun; 2016 Jun; 7():11895. PubMed ID: 27320127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bath-induced interactions and transient dynamics in open quantum systems at strong coupling: Effective Hamiltonian approach.
    Brenes M; Min B; Anto-Sztrikacs N; Bar-Gill N; Segal D
    J Chem Phys; 2024 Jun; 160(24):. PubMed ID: 38916270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Finite-Size Heat Source's Heat Capacity on the Efficiency of Heat Engine.
    Ma YH
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Work extremum principle: structure and function of quantum heat engines.
    Allahverdyan AE; Johal RS; Mahler G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041118. PubMed ID: 18517589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach.
    Jin J; Zheng X; Yan Y
    J Chem Phys; 2008 Jun; 128(23):234703. PubMed ID: 18570515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency versus speed in quantum heat engines: Rigorous constraint from Lieb-Robinson bound.
    Shiraishi N; Tajima H
    Phys Rev E; 2017 Aug; 96(2-1):022138. PubMed ID: 28950461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.